New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

EE 1106 Lab 5

by: Kumar Jyoti

EE 1106 Lab 5 EE 1106 - 001

Kumar Jyoti
GPA 3.3

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

Lab 5 Report
Gregory K Turner
75 ?





Popular in Electrical Engineering

This 7 page Bundle was uploaded by Kumar Jyoti on Sunday January 3, 2016. The Bundle belongs to EE 1106 - 001 at University of Texas at Arlington taught by Gregory K Turner in Fall 2015. Since its upload, it has received 75 views. For similar materials see ELECTRICAL ENGINEERING FRESHMAN PRACTICUM in Electrical Engineering at University of Texas at Arlington.

Similar to EE 1106 - 001 at UTA

Popular in Electrical Engineering


Reviews for EE 1106 Lab 5


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 01/03/16
EE1106 – Introduction to Electrical Engineering Practicum Lab Report Grading Rubric (To be attached as a coversheet to EVERY report) FORMATTING (see comments in graded report for more explanation): Formatting Evaluation Key (Lab 1, 2, 3, 4): 0 = Absent 1 = Extremely Lacking 2 = Poor 3 = Fair 4 = Good 5 = Excellent Formatting Evaluation Key (Lab 5 and all succeeding labs): 0 = Extremely Lacking 1 = Poor 2 = Fair 3 = Good 4 = Excellent 5 = Perfect Primary Structure: _____ Proper margins/spacing is used throughout the report (IEEE format) _____ Proper formatting of section titles and subtitles (IEEE format) _____ Proper font and font size (IEEE format) _____ Overall consistency of formatting throughout the report Figures/Tables: _____ Figures/tables are appropriately named and numbered (IEEE format) _____ Figures/tables are appropriately sized and spaced _____ Screenshots are neatly cropped and clear Spelling, Grammar, and Writing Style: _____ Spelling _____ Passive voice is used throughout the ENTIRE report _____ Sentence Structure _____ Paragraph Structure (IEEE format) _____ References (IEEE Format) CONTENT (see comments in graded report for more explanation): Content Evaluation Key: 0 = Absent 1 = Extremely Lacking 1 2 = Poor 3 = Fair 4 = Good 5 = Excellent _____ Abstract provides end­to­end coverage of the objectives and purpose of the lab experiment _____ Introduction demonstrates a working understanding of major theoretical concepts required for the experiment _____ Procedure is sufficiently detailed and clearly describes all steps taken during the lab experiment _____ Results are sufficiently detailed and data is neatly organized _____ Discussion is a thoughtful analysis of all experimental results and data _____ Discussion demonstrates a working understanding of the purpose of the experiment performed _____ Conclusion sums up the overall accomplishments of the experiment _____ Conclusion sums up the benefits (to the student) of performing the experiment 2 Lab Report 5      Network Theorem Part 1 Kumar Aman Jyoti Electrical Engineering University of Texas at Arlington Arlington, Texas operating in the breakdown region. Conventional diodes and  rectifiers never operate in the breakdown region, but the  ABSTRACT: This paper is about learning how to represent  Zener diode makes a virtue of it and can safely be operated at this point. circuit diagrams on a Bread Board using circuit element as to  make an actual circuit and observe its behavior. Apart from this we will also learn having specified values for resistors and  voltage from the source, how the My DAQ is used as a digital  multimeter to measure the resistance on each resistor as well as  the voltage from the source. We were able to compare the  calculated values with the measured values. Additionally, the  last circuits was created on Multisim, and their characteristics  were determined using a multimeter on the program. The Zener Diode I.INTRODUCTION II. PROCEDURE The purpose of this lab is to gain familiarity with several  important Electrical Engineering theorems.  The experiments  performed in this lab involves the Superposition theorem  The experiments involve the theory and applications covered  which states thatfor a linear system the response (voltage or  in the theorems of superposition, thevenin’s equivalent and  current) in any branch of a bilateral linear circuit having  Zener diode operation. The first what we started was we  more than one independent source equals the algebraic sum  briefly learned and understood the circuit diagrams on the  of the responses caused by each independent source acting  breadboard of part A mentioned in the Lab Handout for Lab  alone, where all the other independent sources are replaced  5. After that we drew the exact circuit in the Breadboard.  by their internal impedances. We will also learn how a  Completing the circuit carefully we measured and recorded  semiconductor device called a Zener diode can be used as a  the resistance of each resistor and the voltage from the power source. Then we found out observing the circuits that is there  reasonable alternative to a voltage source.  a node exists or not which will make us easy as since there  Zener Diode ­   A Zener diode is a diode which allows  are each row connected after the gap. As you can see in the  current to flow in the forward direction in the same manner  diagram in figure 1 that one end of each of the three resistors  are connected at a node which is identified as node B.  as an ideal diode, but also permits it to flow in the reverse  Furthermore we went on connecting the wires with respect to direction when the voltage is above a certain value known as  the diagram to the posts, which received the voltage from the  the breakdown voltage "Zener voltage”. The device consists  voltage source. This voltage is transferred with the banana  of a reverse biased, highly doped, p­n junction diode  cables with the alligator clips tightly fastened on the posts.  3 An important point should always kept on mind that if a  power sources are active. At last of this experiment we  breadboard does not have four posts the alternative way to do calculated and measured the Values as also shown in the  this will be by clipping two alligator clips to one post. It is  table. the reason that the circuit the negative end of Eg 1and the  positive end of Eg 2are connected at a node. Keep in mind    Part C of the lab was done in multisim as instructed. The  also that by doing this we are not shorting out the power  aim of this experiment part C was to work with the Zener  supply because we are connecting the negative end on one  diode by determining the breakdown voltage from the  power supply to the positive end of another, not connecting  voltage source and also studying the changes in terminal  the vice versa. characteristics at the time when the voltage from the power    source is being altered.  In the multisim to access Zener  diodes, we first selected the ‘Zener’ family under the ‘Diode’ group. In the following window that will pop up there  appears many options of Zener diodes in which we selected  the 1N749A Zener diode. As shown in the figure we drew the circuit diagram correctly representing on multisim that we  altered the voltage supplied by double clicking on the power  source and typing range of values. After doing that we  observed that each time the voltage from the power source is  being altered and then we measured and recorded the  terminal characteristics of the Zener diode. Lastly  accumulating these ideas we drew the Graph of I­V  Figure 1: Circuit A shows the two power sources having a common  characteristics. node. Now apply the superposition theorem to calculate the total  voltage for VAB by adding the values calculated from  specified component values and then record in the table. Also calculate the total voltage for VAB by adding the values  III. GRAPHS AND TABLES calculated from measured component values and record  again. With EG1 and EG2 turned on and operating we  measured the total voltage VAB directly from N4, and  calculated the difference in percent (%) between the total  VAB measured from N4 (3di) and the total VAB calculated  with specified component values (3ci) as the basis, and  record in Table 1(b).    After completing Part A we eventually moved on to second  part ­ part B in which there were no voltage source connected to the nodes as a result we with the help of a bread board  with three posts, we tried to clip the alligator cables for as  much of the voltage sources as we can and then added  another wire to the respective node and carefully clipped it to Figure 2: Bread Board the wire ensuring that there is a firm contact between the  alligator clip and the insulation of the wire. The same process was repeated of shorting out each power source and  measuring the voltage of the points A and B and points C and D to prove the superposition theorem. After done with this  we built the circuit in the as to derive the calculated  measurements of points of A and B and points C and D when each power source is shorted out one by one and when both  4 Table 1(a) – Measured value of the components  Table 4 – Voltage and Current Values Table 1(b) ­ N4 Voltages table Table 2 – N5 Voltages  Table 3 – Stimulate Value for Part 3 Figure 6: The graph of I­V characteristics from the data in the table in above. 5 IV. DISCUSSION V. CONCLUSION While performing procedures for experiments on a collection After doing this lab we were able to learn about some terms  of resistive networks we learned different types of methods  which was used further to derive and use it to understand  and theorems too. These experiments involve the theory and  how to measure and calculate the terminal characteristics  applications covered in the lecture on superposition,  between two nodes on a circuit with two power sources –  thevenin’s equivalent and Zener diode operation. Superposition. We also learned about the Zener diode ­ A  Zener diode is a diode which allows current to flow in the  Suppose I have a collection of parts with the same nominal  forward direction in the same manner as an ideal diode, but  also permits it to flow in the reverse direction when the  value and some tolerance, say 50 Ohm 1% tolerance  resistors. What distribution of actual component values can I  voltage is above a certain value known as the breakdown  expect ­The parts follow a normal distribution with standard  voltage. Also we saw that by altering the voltage supplied in  deviation 0.5 Ohms 95% of parts will be within 0.5 Ohms of  the last circuit we were able to find the range of values for  the nominal value 100% of parts will be within 0.5 Ohms of  the breakdown Voltage.    the nominal value . This the reason why we get differences  between calculated and measured values.             V. REFERENCES [1] Lab 5 handout from Lab wiki page [2] Google Images [3] Wikipedi 6


Buy Material

Are you sure you want to buy this material for

75 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Janice Dongeun University of Washington

"I used the money I made selling my notes & study guides to pay for spring break in Olympia, Washington...which was Sweet!"

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Parker Thompson 500 Startups

"It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.