New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Geography Notes Lecture 1-10

Star Star Star Star Star
1 review
by: Kayla Kunhee Ko

Geography Notes Lecture 1-10 GEOG 1111

Marketplace > University of Georgia > Geoscience > GEOG 1111 > Geography Notes Lecture 1 10
Kayla Kunhee Ko

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

Test 1 materials Focus mainly on the bolded, underlined, and italics
Physical Geography
Professor Arthur S. Hopkins
physical geography
75 ?




Star Star Star Star Star
1 review
Star Star Star Star Star
"Same time next week teach? Can't wait for next weeks notes!"
Kirsten Jacobson

Popular in Physical Geography

Popular in Geoscience

This 51 page Bundle was uploaded by Kayla Kunhee Ko on Saturday January 30, 2016. The Bundle belongs to GEOG 1111 at University of Georgia taught by Professor Arthur S. Hopkins in Winter 2016. Since its upload, it has received 36 views. For similar materials see Physical Geography in Geoscience at University of Georgia.


Reviews for Geography Notes Lecture 1-10

Star Star Star Star Star

Same time next week teach? Can't wait for next weeks notes!

-Kirsten Jacobson


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 01/30/16
GEOGRAPHY is the study and analysis of the spatial and temporal distribution of phenomena on the Earth’s surface, and the underlying processes which cause the observed pattern. Where are these phenomena, what is their pattern, but more importantly, why is the pattern the way it is, what causes it. * The spatial science of areas, natural systems, & human- made systems. Five Fundamental Themes of Geography: Location can be both absolute and relative. It is the spatial component of geography, the being concerned with where things are. absolute: latitude & longitude, or GPS coordinates relative: comparing one location to another by the distance between them as measured in either time or miles (kms) Place refers to those characteristics that make a location unique. EX: What makes Athens, GA different from Athens, OH. Movement is the what, how, where and why of the diffusion of organisms and physical events across the Earth’s surface. EX: The migration of people, a hurricane, etc. Regions refers to the study of areas with uniform or similar cultural and/or physical characteristics. EX: North America vs. South America, etc. Human-Earth Relationships looks at the impacts of the environment on people & their impact on the environment. It is the relationship between human societies & their environment. EX: The impacts of deforestation, human pollution, agriculture, etc.; the relationship between the environment & human technological development. 3 Main Sub-disciplines or areas in Geography Physical Geography: (non-human-made patterns) Biogeography, Geomorphology, Climatology, Hydrogeography, Soils geography Human/Cultural Geography: (human-made patterns) Economic, Political, Historical, Cultural, Urban, Population, etc. Techniques: (the tools of geography) Cartography, Remote Sensing, Aerial Photography, Geographic Information Systems/Science (GIS) In this course we are concerned primarily with Physical Geography. * As an area of study, Geography is quite old. * Eratosthenes, a Greek who lived from 275 to 195 B.C., is considered one of the first “geographers”. * He measured the polar circumference of the Earth. * He became an accomplished cartographer or map-maker. * He developed the idea of environmental zones based on temperature (Tº). ** Some other early geographers: * Greek scholars: Aristotle, Hipparchus * Roman scholars: Strabo, Ptolemy * Muslim scholars: Edrisi, ibn-Batuta * Chinese scholars: Phei Hsiu, (Chinese geographical study has been dated as far back as the 5th cent. B.C.) ** More recent geographers: * Alexander von Humboldt, (1769-1859), considered by some the “father” of modern physical geography. * credited with bringing “scientific study” to physical geography * Vladimir Köppen(Koeppen) (1846-1940), developed the Köppen Classification System for climates based on vegetation, temperature & precipitation patterns. * Alfred Wegner (1880-1930), developed the Theory of Continental Drift which later became part of the theory of Plate Tectonics. * Charles Thornthwaite (1899-1963), developed another climate classification system based on the principle of water balance, precipitation & potential evapotranspiration. * Tetsuya Theodore Fujita (1920-1998), developed the Fujita Scale for measuring the intensity of tornadoes. * Robert Simpson (1915- ), developed, along with Herbert Saffir, the Saffir-Simpson Scale for measuring hurricane intensity. * Some other prominent Physical Geographers or related scholars: Climate: Tim Oke, Lonnie Thompson, Russ Mather, Roger Barry, James Hansen, Syukuro Manabe, Joanne Simpson Geomorphology: James C. Knox, Stanley Trimble, Luna Leopold, Stanley Schumm, Gordon Wolman, Karl Butzer, Carol Harden Biogeography: Tom Veblen, Jarrod Diamond, Glen MacDonald, Eugene & Howard Odum EARTH’S SPHERES Atmosphere is the thin gaseous veil which surrounds the Earth. * From sea level to about 60,000 km (37,000 mi) above surface. * This is where weather occurs, our air supply is, etc. Hydrosphere is all the water above, on, and in the Earth in all three (3) states (solid, liquid, gas), freshwater, saline (saltwater), and in-between. * It comprises some 71% of the Earth’s surface, primarily as oceans. * Vital for most living organisms, many weather and many geomorphic processes. Lithosphere is the Earth’s crust and a portion of the upper mantle. * It is the rocky, outer shell of the planet, both land (continents) and the sea bottom. Biosphere all the living organisms of the planet and the interconnections between them and their physical environment. SYSTEMS: It’s common to study “systems” or all the factors influencing an area or particular phenomena. EX: a fluvial (river) system, a thunderstorm or hurricane system, an ecosystem, etc. Two Basic Types: Open System is where the boundaries or interfaces between parts of the system AND other systems allows for the free transfer of energy and matter across them. EX: a weather system, river drainage system, an ecosystem Closed System is self-contained exhibiting no exchange of energy or matter across boundaries. Systems change, they are dynamic, but tend to be in, or in the process of being in some form of an equilibrium state. Equilibrium State is the changing, or relatively non-changing conditions of a system. All systems will change over time, but at different rates, thus some are seemingly in equilibrium while may be moving toward a state of equilibrium. Steady-state Equilibrium is when a system is in balance over time, is neither growing nor contracting but is in full operation. May exhibit small oscillations around an average level or condition however. Dynamic Equilibrium is when a system exhibits wide fluctuates around an average value, and in which the average demonstrates a trend over time. Feedback Mechanism is a process by which when the normal operations of a system cause a portion of the system’s output to be returned as information input. This may cause changes which guide further system operations. What happens in one part of a system has an effect on other parts. Two types of Feedback Mechanisms: Negative Feedback tends to slow or reduce responses in a system and promotes self-regulation of the system. This tends to keep the system in its original condition, inhibiting change. EX: a large mass of ice keeps the air above it cold, which keeps the ice cold, which keeps the air cold, keeping the ice cold, ….. Positive Feedback tends to amplify or encourage responses in a system. It induces progressively greater changes in other parts of the system. What might be termed the “snowball effect”. EX: growth of a hurricane; the system draws into it warm, moist air off an ocean which causes it to grow, drawing in more warm, moist air, causing it to grow, drawing in even more air, ... EARTH/SUN RELATIONSHIPS ** Greater than (>) 99% of Earth’s energy is from the Sun. * The amount (intensity) of sunlight striking the Earth varies spatially (over space or area) with latitude. AND varies temporally (over time) with the seasons (day length) and between day & night. * These variations cause an unequal heating of the Earth’s surface which drives the ocean currents, forms wind, which in turn transports energy across the globe. Earth Movements Rotation is the spinning of the Earth on its axis. It makes one (1) turn about every 24 hours defining day & night. Thus the same side of the planet is not always facing the Sun and solar intensity varies. * The Earth turns counterclockwise, when viewed above the North Pole and the atmosphere rotates with the Earth, held by force of gravity. * A circle of illumination forms between the area of light (daytime) & dark (nighttime). Revolution is the movement of the Earth in its orbit around the Sun. It makes one orbit every 365.2422 days (365 days, 5.8 hrs.), commonly called 1 calendar year. * It is a counterclockwise orbit, when viewed above the North Pole. * The orbit is elliptical, so at one time of the year it is closer to the Sun than the opposite end of the orbit and solar intensity varies. These 2 points are known as: Perihelion when the Earth & Sun are closest to each other, (about 1.47 X 108 km or 91,500,000 miles apart), which occurs on January 4. Thus a little higher solar intensity. Aphelion when the Earth & Sun are the furthest apart, (about 1.52 X 108 km or 94,500,000 miles apart), which occurs on July 4. Thus a little lower solar intensity. Earth’s Seasons Why they occur: * Revolution * Rotation * Tilt of the Earth on its Axis * Axial parallelism * Sphericity * Earth’s seasons are due to the Earth’s orientation to the Sun & thus the varying angle the Sun’s rays strike the Earth’s surface. * Earth’s orientation to the Sun is a result of the tilt on its axis or the inclination of the axis, currently 23.5º from a perpendicular to the plane of the ecliptic. Its Revolution around the Sun and its daily Rotation on its axis are also major factors. * The Earth’s axial parallelism or the orientation of the North Pole of the Earth toward a specific star and the fact that the Earth is a sphere (its sphericity) are also factors controlling solar intensity at the surface. (Three of these factors, inclination of the axis, axial parallelism, and the shape of the Earth’s orbit (revolution), change over long periods of time.) ** This can be seen by the varying solar intensity with day length & with varying seasons. * Summer has longer days, with a higher solar altitude, & thus more intense sunlight and more energy. * Winter is essentially the opposite of summer, shorter days with a lower solar altitude & thus less intense sunlight and less energy. * Solar Altitude (SA) is the angle of the Sun above the horizon at any given latitude. EX: At a SA of 90º, the sun is “directly overhead”, and thus yields the potentially maximum solar intensity. Solstices & Equinoxes * The five factors above cause the seasons, with 4 days of particular interest: the 2 Solstices & the 2 Equinoxes. ** March Equinox Mar 21 – 22 (start of Spring in NH & start of Fall in SH) ** June Solstice Jun 21 – 22 (start of Summer in NH & start of Winter in SH) ** September Equinox Sep 22 – 23 (start of Fall in NH & start of Spring in SH) ** December Solstice Dec 21 – 22 (start of Winter in NH & start of Summer in SH) (Know the months for each of these events and for each hemisphere.) * The Sun is never directly overhead (SA = 90º) outside 23.5º N or S latitude (the Tropic of Cancer & Capricorn). * The northern hemisphere winter = southern hemisphere summer, etc. Climatological Seasons: (Also know these for the NH only.) Winter: Dec, Jan, Feb Spring: Mar, Apr, May Summer: Jun, Jul, Aug Fall: Sep, Oct, Nov WEATHER vs CLIMATE ** The day-to-day ** The statistical properties of the conditions of the atmosphere, including measures of the Atmosphere. average conditions, variability, etc. over long periods of time. ** constantly changing ** slow, long-term changes ** The state or condition of the ** A description of aggregate atmosphere at a particular weather conditions. time and place. ** Comprised of various factors: ** A sum of the daily and seasonal air pressure, air temperature, weather events over decades, humidity, clouds, precipitation, hundreds or thousands of years wind, visibility, etc. (averages of these factors). Meteorology: science that studies atmosphere and is processed on a short term basis Climatology: study of long term atmospheric cond.   ORIGIN OF THE ATMOSPHERE A B C D --|------------------------------------|------------------------------|-------------------- 4.5 billion 3 - 1.5 bya .5 bya years ago (bya) A: earth formed and hot gases escape (process of out-gassing) B: Earth cooled and gases accumulate. Atmosphere comprised mainly of CO 2carbon dioxide), N (2itrogen), & methane. Little to no 2 (oxygen) or O 3ozone). C: o2 generating aquatic organisms evolve and oxygen supply slowly rises D: Green land plants widespread and the atmosphere has taken on its basic present conditions. Ozone levels increase and spread. ** Main process for increased oxygen levels is photosynthesis. COMPOSITION OF THE ATMOSPHERE * The atmosphere is a mixture of discrete gases, with solid & liquid particles suspended within it. Some components are fairly stable while others vary spatially and/or temporally. Constant Gases: those found in the same proportions (%) within the lower atmosphere (up to 50 miles altitude) Variable Gases: those present in differing amounts spatially and or temporally within lower atmosphere Constant Gases: 3 gases make-up just under 100% of the atmosphere Nitrogen (N): ~ 78% Oxygen (O ):2 ~ 21% Argon (Ar): ~ .9% Variable Gases: 4 which influence weather and life systems Carbon dioxide (CO ) 2 Water vapor (H O) 2 Ozone (O ) 3 Methane (CH ) 4 Carbon dioxide & Methane are 2 of the “Greenhouse Gases” which help absorb & reflect long wave or terrestrial radiation (heat energy) emitted by the Earth, and thus help regulate surface temperatures. Water vapor, also a “Greenhouse Gas”, is quite variable throughout the atmosphere, ranging from about 4% by volume in tropical areas to < 1% in some deserts. * It is the source material for cloud formation and precipitation. * It also absorbs radiant energy and helps regulate surface T’s &is important in energy transfer within the atmosphere * Water is only substance found in all 3 states (solid, liquid, gas). Carbon dioxide, methane, water vapor and nitric oxides are all known as the “Greenhouse Gases”. Ozone is concentrated in the stratosphere (10 - 50 km above the surface) in amounts of < .00005% by volume of the atmosphere. * NOT a greenhouse gas but does absorb damaging uv radiation * It is important not only because it helps block-out some of the UV radiation which is harmful to living organisms, but this also helps regulate surface T°s. ** OZONE “HOLE” * The commonly called phenomena of an “Ozone Hole” around the Earth’s Polar Regions is really a seasonal depletion of ozone in the stratosphere. This is thought to be caused by increased amounts of chlorofluorocarbons (CFC’s) in the stratosphere because the chlorine atom of the CFC molecule has been shown to break apart ozone molecules. * Some research suggests that a 1% loss of O 3eads to a 2% increase in UV radiation reaching the Earth's surface. ** Some consequences of less ozone: * Increase amounts of uv radiation reach the earth’s surface which can lead to: * Increased cases of human skin cancer & cataracts, and increased damage to other animals and to plants. * Increased energy reaching ht earth’s surface and thus increased surface temperatures   VERTICAL STRUCTURE OF THE ATMOSPHERE Important aspects of the atmosphere: Air Pressure & Temperature. Air Pressure * At sea level the average pressure is 1013 mb or 1 kg above every cm2, or 29.92 inches of mercury. * There is an inverse relationship btwn air pressure and height such that air pressure decreases with increasing height * Regarding volume, 50% of the atmosphere is below 5.6 km (~ 3.36 mi) and 90% of the atmosphere is below 16 km (~ 9.6 mi). Temperature (Tº) * Tº may decrease or increase with changing altitude in the atmosphere. * In the troposphere, it normally decreases with an increase in altitude at an average rate of 6.5’C/km but if the T increase with altitude, it’s called a temperature inversion. temperature and heat is not the same thing * Any change in Tº with a change in altitude is termed a Temperature Lapse Rate. Layers of the Atmosphere: Two general regions based on their chemical composition: Homosphere which is the area of uniform chemical composition in the lower atmosphere (surface to 80 - 100 km (50 - 63 mi) altitude). Heterosphere which is the area of non-uniform chemical composition in the upper atmosphere (above the Homosphere). There are also 4 layers delineated by temperature changes: Troposphere is where T’ usually decreases with increasing altitude from the surface to an average altitude of 8-10 miles * Heated from the ground up * This is where almost all weather takes place. Stratosphere is where Tº stays constant or increases with altitude. * It lies above the troposphere to an altitude of about 50km (31 mi) and contains the ozone layer which is the heating element for this layer. Mesosphere shows a Tº decrease with increasing altitude between ~ 50 & 80 km (31 & 50 mi). Thermosphere is the top layer and where Tº increases dramatically with altitude. It is also the area of the atmosphere where the aurora borealis and aurora australis occur (Northern & Southern Lights). RADIATION/ENERGY BALANCE ENERGY is the ability or capacity to do work on some form of matter. Potential energy is the energy of an object prior to it being released as free energy, commonly called the energy at rest. Kinetic energy is the free energy of motion or action. Heat energy is the kinetic energy generated by the motion of molecules measures as the sum total of all molecular motion of an object Radiant energy energy transferred as electromagnetic waves by all objects with a T’ > o’K (-273’C or absolute 0) * Energy follows the Laws of Thermodynamics: First Law of Thermodynamics: In all physical & chemical changes energy is neither created nor destroyed, but it may be converted from one form to another. (Law of Conservation of Energy) Second Law of Thermodynamics: When energy is changed from one form to another, some of the useful energy is always degraded to lower-quality, more dispersed, less useful energy. Properties of Radiant Energy or Radiation: * Light, heat, radio, X-rays, etc. are all part of the electromagnetic spectrum or radiation. * All objects with a Tº > 0ºK emit radiation with the amount of energy emitted dependent on the Tº of the object. * Hotter objects emit more total energy than cooler objects and the hotter the emitting body, the shorter the wavelength * The Sun's maximum energy is radiated at .5 micrometers & its Tº = 6000º K (5700° C or 10,300° F). This Solar Radiation is also called Shortwave (SW) Radiation. * The Earth's maximum energy is radiated at 10 micrometers & its Tº = 300ºK (15° C or 59° F). This Terrestrial Radiation is also called Longwave (LW) Radiation. SOLAR RADIATION: * Shortwave (SW) radiation is designated as those wavelengths of the electromagnetic spectrum which are ~1 micron and smaller. * Visible light is in the wavelengths from .4 microns (violet) to .7 microns (red). The Sun emits wavelengths from about ~.2 to 8 micrometers. * As it passes through Earth’s atmosphere, it may be scattered, reflected, or absorbed, or reach the surface. This affect the transfer of this radiant energy to other forms, both within the atmosphere and at the ground surface. Scattering : process of incoming solar radiation being redirected from its original path by particles in the atmosphere * Gas molecules scatter blue & violet SW better than longer waves waves such as red or orange which affects the sky color we see. * Some of this is redirected back into space and that energy is lost to the Earth. Come in, hit the air particle, get scattered Reflection: process whereby a surface turns back a portion of the radiation that strikes it—bouncing off the object * Radiation follows the Law of Reflection which states that the angle of incidence (incoming) = the angle of reflection (outgoing). Albedo is the term describing the % of radiation reflected off a surface compared to the incident radiation striking it * The Albedo of a surface/object will vary dependent on its composition, color, roughness and the sun angle. * approximately 31% of all incoming solar wave from the sun is reflected back to space so the average planetary albedo is 31— lost energy * Other examples: thick clouds 70-80, thin clouds 30- 50, fresh snow 80-85, old snow 50-60, forest 5-10, grass 20-25, dry earth 15-25, water 3-5 (high sun altitude) to 50-80 (low sun altitude) *For plants, low albedo, high absorption; for snow, high albedo, low absorption for it not melt… Absorption is process whereby some of the energy of incoming solar wave radiation is transferred into the object being struck. *This energy is transferred as (changed to) heat energy, as it increases the internal molecular motion of the object/substance. * Since heat energy is increasing in the object, so will the temperature of the substance/object increase * Substances in the atmosphere with high absorptive characteristics for SW include O2, O3, & H2O, however, overall the atmosphere is a poor absorber of incoming SW. Absorption is the opposite of reflection. * So, of the 100% of incoming radiation from the Sun that hits the top of the atmosphere: ** ~45% reaches the earth’s surface and is absorbed **~24% is absorbed by the atmosphere (cloud, gases, dust) ** ~31% is lost to space by reflection and scattering TERRESTRIAL RADIATION: * Longwave (LW) radiation is designated as those wavelengths of the electromagnetic spectrum which are ~1 micron and larger. * Earth emits radiant energy at wavelengths generally in the 1- 30 micrometers range or in the infrared portion of the spectrum. * It can be scattered, reflected and absorbed, and 2O & H2O are very good absorbers of these wavelengths. * Water vapor absorbs 5 times what all the other gases do * Some of the LW radiation emitted by the Earth is thus “trapped” by these and other gasses in the atmosphere. This process is commonly called the Greenhouse Effect and what heats the lower atmosphere and thus the Earth. * This Greenhouse Effect causes the atmosphere to be heated from the ground up as the LW radiation is "bounced" back & forth between the atmosphere (clouds, dust, and Greenhouse Gasses) & the ground. * This helps to keep the Earth's average Tº some 35º C warmer than it would be otherwise. with Greenhouse Gasses without them 15ºC (59ºF) -18ºC (0ºF) * The actual process of warming the atmosphere is a little more complicated than the simple Greenhouse Effect. The basic Greenhouse Effect does not incorporate the effect of air moving vertically (convection) or horizontally (advection or wind) and thus a more accurate term is the Atmospheric Effect. * the process of global warming is basically an enhanced greenhouse effect, or Greenhouse effect on Overload GLOBAL ENERGY/HEAT BALANCE HEAT: energy measured as the total kinetic energy of all the atoms and  molecules of an object or substance (temperature is the average kinetic energy)    A calorie is the term which refers to the heat required to raise the Tº     of 1 gram of water by 1ºC. Heat is often measured in calorie units.  Heat Transfer is by 3 primary mechanisms:     Conduction,   Convection,   Radiation Conduction : process of transferring heat thru matter molecule by molecule— done by direct contact and transfer from one molecule to the next     EX:  Heat one end of a metal rod and some of that energy will              be passed molecule by molecule to the other end.     *  Some substances will more easily transfer heat via conduction than others,          solids (most metals) for example, and these are known as conductors of         heat. Substances which are poor transferors of heat (air for example) are          known as insulators.     *  As heat energy flows thru a substance, it will flow from an area         of higher Tº toward an area of lower Tº.     * important mechanism for heating the earth’s surface and the air in contact  with the surface but not high into the atmosphere    Convection: process of transferring heat thru matter by mass movement of  material within the substance. A portion of the material is heated and in mass  movers thru the substance      EX:  As water in a pan is heated on a stove, a small portion at the bottom of              the pan is heated and in mass moves toward the top of the pan.       *  This is the most important mechanism of heat transfer in the          atmosphere. This transfer of energy from the surface up into the          atmosphere is comprised of 2 processes or methods,         Sensible Heat Flux  &  Latent Heat Flux     *  Sensible heat flux is the process of transferring energy using the dry          components/molecules of the air (O2, CO2, N2, etc.).     *  Latent heat flux is the process of transferring energy using water          vapor molecules or the processes of evaporation and condensation.   **  Latent heat: heat energy added to a substance without changing the T’ of  the substance but changing the state of the substance (solid, liquid, gas)     EX:  It takes a specific amount of calories (energy) to raise the temperature              of a molecule of substance, but then an additional amount to change it              from a solid to a liquid, or a liquid to a gas. The molecules will store              this energy and then release it when changing from a gas to a liquid,              or a liquid to a solid.  Radiation is the wavelike transfer of energy.     EX:  the use of UV radiation, visible light, infrared radiation, etc. EARTH’S HEAT BUDGET refers to how the Earth system balances     the energy of incoming (solar or SW) radiation with outgoing     (terrestrial or LW) radiation. It also encompasses all the various      pathways and types of energy involved within the Earth system.       *  if there was no balance of incoming and outgoing energy, then earth would be too cold or too hot Q* = net radiation = (SW↓ ­ SW↑) + (LW↓ ­ LW↑) =                                incoming ( ↓ ) minus outgoing ( ↑ ) Q* =     Q G             H      +        LEQ         ground           sensible             latent          heat                heat                   heat          flux                flux                    flux    (conduction)  (dry convection)  (evaporation/condensation)     *  This balance involves both a temporal (over time) and spatial         (over an area/space) component. It will vary with time periods         (daily, monthly, annually, etc.) and in different areas of the Earth.     **  day  vs.  night,     summer  vs.  winter     **  tropics   vs.   polar regions *  there exists a horizontal (spatial) imbalance of energy over the earth’s surface  which leads to a surplus in the tropics and a deficit at the poles. The earth system  prefers a status of equilibrium, so it tries to balance this imbalance. * Energy is redistributed by moving excess energy from one place to another          across the Earth’s surface. Fluids are the most efficient method to do this          and the two primary fluids on the Earth are water and air. Energy is          thus moved via:     Atmospheric circulation (winds) &      Oceanic circulation  (currents)   *  Most heat transfer takes place between 30º ­ 50º latitude N & S          (the Mid­Latitudes) & a large portion of the stormy weather we         receive in the U.S. is attributable to this transfer of heat energy.   *  QLEmost important in the humid tropics   *  QSHmost important in the arid tropics GLOBAL T° PATTERNS/DISTRIBUTION TEMPERATURE (T°): measured as the average kinetic energy of the atoms and molecules of an object or substacne           *  When the atoms of a substance or object are moving faster this         means greater kinetic energy, which means the substance will have         a higher Tº.     *  Tº is NOT heat such that the amount of HEAT energy in one object         or substance may be different than another, but they have the same         temperature.     EX:  An 8 oz. glass of water and a filled bath tub can have the             same Tº, but will not have the same amount of heat energy             because of different volumes. **  T° Scales:                    Celsius         Fahrenheit        Kelvin  freezing pt  of water            0°                  32°               273° boiling pt  of water         100°                212°               373° range             100°                180°               100°    * 0°K = no molecular motion  or   absolute zero which =  ­273°C = ­459° F *  C° = (F° ­ 32°) x 5/9             F° = (C° x 9/5) + 32°                      K = C + 273    or    C = K ­ 273    Isotherm: line on a map or chart which connects points of equal temperature       Factors which Control T°s at the Earth's Surface  Receipt of Solar Radiation refers to the amount of solar radiation a     location receives. This is determined by the locations latitude. On an      annual basis, lower latitudes (closer to 0º, the Equator) receive more     solar radiation than higher latitudes. This is Differential Heating of Land and Water Surfaces:      **   land surfaces cool and warm more quickly than the water surfaces and to  lower and higher T’s because:      *  Water is more transparent (SW can pass thru it), while land          is opaque (thus SW does not pass thru it). Thus the solar         energy striking the land only needs to transfer energy to the top         portion of the ground, but it must try to ‘heat­up’ a greater          volume of water.      *  The specific heat of water is 3X greater than land.         Specific heat is the heat needed to raise 1 gm of a substance 1C.      * evaporation from water is greater than land, so energy is used to evaporate  the water and not just raise the T’      *  Water turbulence & movement causes water that has been heated to be          replaced by cooler water that has to be heated. This movement will be both          horizontal & vertical.         SO, it takes more solar energy to heat up the water than it does the same  amount of land     *  Water thus has a moderating influence on T° such that average         monthly T°s of a location near a large water body will not vary as         much between summer and winter compared to a location far away         from an ocean.        * Inland locations show greater T’ variation between winter and summer this  is the idea of continentality.  Geographic Setting & Position  : T’ differences brought about by a location being  on one side of a continent versus the other    *  This is related to a locations relationship to wind patterns, and         whether that wind is coming off a large water body or a large          land surface. This is the idea of windward vs. leeward side of a         continent.     * Windward: side/ direction the wind is coming from        Leeward: side/direction the wind is going toward         *  For North America Windward is the West Coast (and thus the         wind is coming off a water surface) and          Leeward is the East Coast (and thus the wind is coming off a         land surface).     Ocean Currents                             *  Will influence air temperatures of both the ocean area and adjoining land          area where the current is located.                         *  Warm currents : keep the T’ higher        EX:  Gulf Stream helps keep the British Isles a little warmer                  than they would be without it.     *  Cold currents: keep the T’ lower        EX:  California Current helps keep the U.S. west coast a little                 cooler than it would be without the current.         *  Ocean current patterns will also influence precipitation patterns.         Elevation influences Tº simply because within the troposphere as          elevation/altitude increases, Tº normally decreases.          *  locations at higher elevations usually have lower average annual  temperatures compared to lower locations   Cloud Cover & Albedo affect surface temperatures by controlling the          levels of solar and terrestrial radiation at the Earth’s surface.     *  Clouds trap­in terrestrial radiation keeping the surface warmer             (Greenhouse Effect), but they will also reflect solar radiation              coming in causing the surface to be cooler. Thus:     cloudy day  vs  clear day;   cloudy night  vs  clear night     *  a cloudy day is usually cooler than clear day         *  cloudy night is usually warmer than clear night  Worldwide T° Patterns  *  The variations in temperature seen across the Earth’s surface are         controlled by the above factors, with one of the key factors          being the proportion of land to water over the Earth's surface.         The Southern Hemisphere has a higher percentage of water          than does the Northern Hemisphere.     *  Southern Hemisphere:  81% water,  19% land     *  Tº variations & range are smaller.     *  Northern Hemisphere:  61% water,  39% land     *  Greater Tº variations over the land surfaces.     *  Greater winter time variations with latitude than summer.     **  Coldest Tº's are usually over land at high latitudes in winter.             EX:   Siberia and Antarctica     **  Warmest Tº's are usually in the tropical deserts in summer.             EX:   Sahara   Wind Chill Temperature Index refers to the effect of wind and          temperature on a person’s body which can lead to increased heat         loss from the body and a lowering of body T°. The wind moves heat         generated by the body away from the body, thus the body has to work         harder to generate more heat.     *  A stronger wind  =  greater heat loss.     *  Can lead to hypothermia.      Heat Index refers to the effect of humidity and temperature on a         person’s body which can lead to an increase of body T°. High         humidity (the amount of water vapor in the air) decreases the          body’s ability to cool down by sweating, thus increasing the body T°.     *  Can lead to heat cramps, heat exhaustion, or heat stroke. AIR PRESSURE & WIND Air Pressure is measured as the force of the air pushing down on a     surface. In meteorology it is measured by the height of a column of      mercury and expressed in units of millibars (mb) or inches of Hg.     *  It will vary both spatially and temporally, with the average         sea­level barometric pressure being 1013 mb.     *  When displayed on a map, lines of equal barometric pressure         are called isobars.          *a high or heavy pressure cell: H          *a low or light pressure cell: L Pressure Gradient Force (PGF) is the difference in barometric (air)     pressure between two points. If this difference is horizontal across     the Earth’s surface, this will initiate the horizontal movement of      air or the process of advection, commonly called WIND.     Air pressure & the PGF determine wind direction & wind        strength or speed.     * a steep pressure gradient, a strong PGF, will yield stronger (faster) winds     * a gentle pressure gradient, a weak PGT, will yield weaker(slower) winds    WINDS will flow (blow) from an area of higher pressure toward an area of lower  pressure      **  These differences in pressure are set­up by differences in Tº         created by differential heating. A portion of the Earth’s surface         which receives more solar radiation will absorb more energy and         heat­up. This will in turn heat­up the air above it and this warmed          air will rise. As the air rises, it exerts less force/pressure on the          surface and an area of Low barometric pressure is formed.          Conversely, colder air from higher in the Troposphere will sink,         exerting more force/pressure on the surface. This forms an area         of High barometric pressure.      Also, as that sinking air reaches the surface it will spread out away         from the center of High pressure and flow toward an area of         Low pressure.     energy imbalance ­­­­­­­­> Tº  ­­­­­­­­­> Pressure ­­­­­­­­­­> wind                                         difference          difference     Winds generated by a PGF would flow in relatively straight paths,      but do not because of various other forces also acting on them.  Coriolis Force is the apparent deflection in movement of an object     (wind, ocean currents, planes, etc.) from a straight path due to the     Earth’s rotation.  What causes this?    *  Earth is a sphere, rotates on its axis and the whole Earth’s surface         does not spin at the same velocity. Also, objects that move          independent of the Earth’s rotation will be affected by its rotation.    *  With your back to the wind (or other object), deflection is:  To the right of the original path in the NH To the left of the original path in the SH  *  Characteristics of Coriolis Force (CF):      *  It is strongest at the poles & zero at the equator.      *  An object’s speed will alter the amount of deflection with a             higher speed yielding greater deflection.      *  CF alters the direction, but NOT the speed of an object.   TYPES OF WIND:   Geostrophic  &  Surface    Geostrophic winds (or upper­level winds) are those which flow 1 ­ 2 kms          above the surface. They are formed, like all winds, by Pressure          Gradient Force and affected by Coriolis Force. This yields a net effect          such that when shown on a map, geostrophic winds flow parallel to          the isobars.    Two main patterns of flow thus emerge,  Zonal and Meridional.   Zonal flow: pattern which exhibits a more flattened air flow with a primarily E­ W orientation    Meridional flow: exhibits a more curved flow or pattern with distinct curves,  ridges and troughs, showing a more N­S orientation     Jet Stream is a geostrophic wind pattern of particular interest and     importance.  It is a meandering “river” of air 100­300 miles wide,      3000­7000' deep at an attitude between 25,000'­35,000' above sea     Level. It has average wind speeds between 50 and 110 mph, but can     Reach 190 mph. They are highly turbulent and their speeds and      location will vary considerably. Two of interest are the Polar Jet      Stream and the Subtropical Jet Stream. Rossby Waves are essentially a subset of the Polar Jet Stream stretching     from one trough to another, their wavelengths on the order of      thousands of kilometers in length. Often a series of Rossby Waves     circle the planet, forming a meridional pattern of ridges and troughs. Surface winds are those which flow below 1­2 kms altitude and thus      are in contact with the Earth’s surface, unlike geostrophic winds.     They are formed, like all winds, by Pressure Gradient Force and      affected by Coriolis Force, but unlike geostrophic winds are also     affected by Friction Force with the ground. This yields a net      effect such that when shown on a map, surface winds flow across      the isobars.        The effect of all these forces on wind patterns in relation to a High      and Low pressure cell will thus be different.   Low pressure cells: cyclonic counterclockwise flow or circulation in the NH   High pressure cells: anti­cyclonic or clockwise flow/ circulation in the NH So remember all the aspects of how winds flow in relation to a High cell  versus a Low cell: In a High Cell winds sink and diverge (flow away) from it in a clockwise  circulation In a Low Cell wind rise and converge toward it in a counterclockwise circulation  Wind Measurements   Direction is measured by compass directions, north, south, east,      west, NE, SW, etc.      Winds are always named for the direction they are coming from!!!!   Speed  is recorded by an anemometer in mph or kph or knots.          EX:         calm = <1mph, moderate wind = 13­18 mph,                           gale = 39­46 mph, and hurricane = >73 mph     * Winds can viewed at 3 or 4 different scales:          Macroscale              Planetary    1000 ­ 40,000 km     Westerlies              Synoptic     100 ­ 5000 km          hurricanes          Mesoscale      1 ­ 100 km                T­storms          Microscale     < 1 km                      tornadoes & dust devils  Types of Local Winds:     Land/Sea Breezes often form along ocean coastal areas because          of differential heating between the land and water surfaces, which         forms a PGF between the two areas. An area of lower pressure         forms over the land and an area of higher pressure forms          over the water.      A Sea Breeze is one which flows from the sea/ocean toward the land     A land breeze is one which flows from the land toward the sea      Valley/Mountain Breezes often form in mountainous regions when         warm air flows up the mountain during the day and cool air          flows down the mountain at night. This pattern occurs on the          same side of the mountain.     Chinook wind: warm, dry wind coming off (down) a mountain that started on  the opposite side of the mountain        Katabatic wind is a flow of dense cold air downslope under the         influence of gravity in areas of large continental ice sheets such          as Greenland and Antarctica. GLOBAL PATTERNS: PRESSURE and WIND AIR PRESSURE    Low Pressure Belts or Cells areas of uplift and convergence at the surface     EX:   Intertropical Convergence Zone (ITCZ),  Subpolar Lows (SPL)    High Pressure Belts or Cells areas of susidences and divergence at the surface     EX:   Subtropical High (STH),   Polar High (PH)   WINDS      Are dictated by:   Pressure Gradient Force    Coriolis Force    Friction               *  On a global scale a simplified 3­cell model can be identified. But the              interaction of these cells and overall weather processes create a more               complex system of winds.    Know the major  pressure belts/cells:   ITCZ,  STH,  SPL,  PHP.            Know whether the air is rising or sinking, converging or diverging          for each of these.   Know the major wind patterns:  Northeast and Southeast Trade Winds,          Westerlies, Easterlies.         Know at what latitudes they will be found and which direction they flow. ATMOSPHERIC MOISTURE:  HUMIDITY Hydrologic Cycle is the continuous movement of water from the Earth's       surface to the atmosphere and back to the surface, then to the atmosphere, ..  *  Basic cycle involves the processes of Evaporation & Transpiration          (Evapotranspiration),    Condensation,    Precipitation,     Runoff    * Transpiration   refers to the water released to the atmosphere by vegetation  during the process of photosynthesis      Latent heat: energy it takes to change from solid to liquid States of Water:   solid, liquid, & gas.     Know these and the processes that      change water from one state to another:  melting,   evaporation,      condensation,   freezing,   sublimation,   &   deposition.  (Know whether   energy  is being   added (absorbed)   or released   fo      each process.)         HUMIDITY is measure of the amount of water vapor in the air   Specific Humidity : measured as the grams of water vapor per kilogram  ­­Measures mass       Absolute Humidity: measured as the grams of water vapor per cubic meter of  air. ­­Measures volume   Relative Humidity (R.H.) is a measurement of the ratio of water vapor          (H2O v actually in the air (water vapor content) compared          to the maximum amount of water vapor the air could hold (water         vapor capacity). This is a function of the air temperature and is          expressed as a percentage.     EX:  It is calculated using the specific humidity in units of g or mb.             (actual water vapor content / water vapor capacity) x 100 = R.H.             (10 g / 30g) x 100 = 33% RH *  Some other relevant terms:   Partial pressure refers to the idea that each component of the atmosphere          makes up a part of the total air pressure measured.  Water vapor pressure: proportion of the air pressure which is the force exerted  by water vpor molecules measured in millibars    Saturation  : condition when the air si holding all the water vapor it can hold  Saturation vapor pressure: water vapor capacity of the air as measured in mb.     *  The amount of water vapor the air can hold, its capacity, is a function          of Tº. Wamer the air, more the water vapor can hold.       *  When the Relative Humidity = 100%, the air is saturated. In this condition  some of          the water vapor will change from a gas to a liquid, condensation occurs.          If enough condensation occurs, a cloud or fog will form.    **  This is controlled by the water vapor content &the air’s water vapor          capacity, which is controlled by Tº.            Dew point T° (DPT)  : T’ at which a given mass of air becomes saturated, holding all the water vapor it can hold      Any further cooling or addition of water vapor results in active     condensation, the formation of dew on a solid surface.     *  It is an indication of the moisture level in the air and is controlled by          vapor pressure, NOT by air Tº.     *  If the air temperature equals the DPT, then the air is saturated          and the RH equals 100%.   How to change the RH:      *  Adding or subtracting water vapor to the mass of air or by lowering or  raising the temp.  Examples of how to bring air to the point of saturation (RH = 100%):  By adding water vapor to atmosphere (air T° (capacity) held constant) air T°:                 25°C             25°C                 25°C Sp. Hum.:         5gm/kg           10gm/kg             20gm/kg capacity:          20gm/kg         20gm/kg             20gm/kg R.H.:                 25%                 50%                 100%                   {(5/20)X100}     By cooling the air (actual water vapor content (Sp. Hum.) constant) air T°:                 30°C             20°C                 15°C Sp. Hum.:         10gm/kg         10gm/kg             10gm/kg capacity:            27gm/kg         14gm/kg             10gm/kg R.H.:                 37%                 71%                 100%                   {(10/27)X100}    **  when the R.H varies during the day, it’s because of a change in air temp or a  change in the amount of water vapor in the air   * the most common way and easiest way for the RH of the air be changed is by  changing the air temp          *  This is also the most common & easiest way for the air to become         saturated and thus for condensation to occur, by changing the air T°.  **  Water vapor content in the air and thus RH varies from day to day,         month to month, seasonally and spatial (from place to place).        *  Remember, the colder the air, the less water vapor it  can old. While the  warmer the air, the more water vapor it can hold. ADIABATIC PROCESSES  In meteorology, the term adiabatic refers to a parcel of air changing temperature  without heat energy being added or removed. **  A parcel of air that contains warm air is less dense (lighter) and         thus may rise. As this parcel of air rises in the atmosphere, it will         encounter lower pressure and thus expand. As it expands the         molecules in it will start to slow down and thus kinetic energy          levels will decrease. As this occurs, the T° will also decrease. **  Conversely, a parcel of cold air is more dense (heavier) and thus         sinks. As this parcel of air sinks in the atmosphere, it will         encounter higher pressure and thus be compressed. As it is         compressed the molecules in it will start to speed up and thus          kinetic energy levels will increase. As this occurs, the T° will          also increase.  SO, Expanding air= temperature decrease Compressing air= temperature increase  **   But the temp changes without heat being added or subtracted *** This is Adiabatic Temperature Change. Changing the Tº of the         air without adding or subtracting heat. Simply the result of          compressing the air or allowing it to expand.    RESULT  :        ** Rising air in the atmosphere expands and cools     ** Sinking air in the atmosphere is compressed and warms    The Rate of Adiabatic Temperature Change varies with the humidity      condition (water vapor content) of the air, is it Dry (unsaturated) or     Wet (saturated). Unsaturated air will change T° at a faster rate than      will saturated air.   Dry Adiabatic Rate:    (DAR or DALR)     When a parcel of air is unsaturated its air Tº > dew point Tº and         thus its RH < 100%.       *   The DAR of unsaturated air is a constant rate of                1ºC / 100 m   or   10ºC / 1000m.          Thus:   rising air cools at 1C’/100m (10C/100m)  sinking air warms at 1C /100m (10C/ 100m)   Saturated Adiabatic Rate:    (SAR or SALR)     When the air parcel is saturated its air Tº  =  d.p.Tº and thus its         RH = 100%.   * The SAR is not a constant rate but a variable rate of .5C~.9C/100 m or  5C~9C/1000m     *   The SAR is dependent on the moisture content of the air. The more water            vapor there is in the air, the slower the rate of decline             (closer to 5°C / 1000m).      *   This is because condensation releases latent heat, thus slowing             the rate of cooling (or warming).   **  So as warm air rises (the process of convection) it cools. If the air T°          reaches the dew point T°, saturation is reached and thus condensation         may begin. If there is enough water vapor in the air parcel, then a         cloud may form. The level of the atmosphere where this occurs is          known as the condensation level and will vary temporally and         spatially.     Condensation level is the height in the atmosphere at which condensation occurs  where the cloud formation begins (usually seen as the bottom of a cloud mass)           RH = 100%;    air Tº = d.p.Tº   Atmospheric    Stability refers to the tendency of an air parcel, with its air water vapor, to either remain in place or to change vertical position by ascending  (rising) or descending (falling)        *  A stable parcel of air resists vertical displacement or, when             disturbed, tends to return to its starting place.        *  An unstable parcel of air continues to rise until it reaches an             altitude where the surrounding air has a density & T° similar             to its own. Rules of Stability    1)   When an air parcel is warmer (less dense) than the surrounding             air, the parcel will rise:    UNSTABLE  air or condition.    2)   When an air parcel is colder (denser) than the surrounding air,              it will tend to stay at the same level  or  sink:    STABLE air.    3)   The Environmental Lapse Rate (ELR)  is the Tº profile of the             atmosphere (surrounding air).  The actual T° lapse rate in the lower              atmosphere at any particular time under local weather conditions is              the ELR.      Whether a particular parcel of air will rise (unstable) or not rise (stable)          is a function of the T° inside the parcel of air as compared to the T°          outside the parcel of air, and thus the ELR determines air stability          or instability.   Types of Stability    Stable conditions exist when the  ELR < DAR.          Absolutely stable conditions or Absolute Stability     *   This usually results in NO UPLIFT of air, and may bring about             subsidence or sinking of the air parcel. This usually causes clear sky  conditions. High pressure cells form stable atmospheric conditions     *   The most severe example of stable conditions is a Tº inversion             when the air Tº is increasing with increasing altitude in the             troposphere.    Unstable conditions exist when the  ELR  >  DAR.               Absolutely unstable conditions or Absolute Instability     *  Result of the uplift of the air parcel and often leads to cloud sky conditions.  Low pressure cells form unstable atmospheric conditions          Conditionally Unstable conditions exist when the ELR is between      the DAR & the SAR.     SAR  <  ELR  <  DAR     *   the atmosphere will vary between stable and unstable and usually the  atmosphere is more unstable in the upper portion and more stable in the lower  potion.   ***   Stability is important in daily weather patterns because it controls             whether clouds form or not and the type of clouds that may form.             This in turn will affect the potential for precipitation.  LIFTING MECHANISMS    *   For air masses or parcels of air to cool adiabatically ( by expansion) and          to reach the dew­point T° and saturate, condense, and form clouds and          perhaps precipitation, they must lift and rise in altitude.    *   There are 4 principal lifting mechanisms which operate in the atmosphere.             Convective Lifting,    Convergent Lifting,             Orographic Lifting,    Frontal Wedging     Convective Lifting is the process of warming a parcel of air at the surface by  conduction then the whole parcel rising into the atmosphere since it is warmer  than the surrounding air     *   The heating of the Earth’s surface at a given location will produce the              necessary elements to establish these UNSTABLE conditions.     *   If there is enough moisture in the air parcel, then cloud formation may              develop & even precipitation. This is commonly how afternoon  thundershowers are produced in the summertime.     *   This is also part of the process, in conjunction with convergence,             that occurs in Low pressure cells. Convergent Lifting is the process by which winds flow together form opposite  directions and are forced to rise due to compression or squeezing   *  Both convection & convergence are at work to form the         Inter­Tropical Convergence Zone (ITCZ), and Low pressure cells. Orographic Lifting is the process by which air is forced to rise over a mountain  range or other elevated land barrier and thus cool adiabatically.     *  The pattern of precipitation is governed by this as rain/snow will         occur on the windward side of the mountain, while little or no         precipitation occurs on the leeward side.     *  This often forms a Rain Shadow Desert on the leeward side.  Frontal Wedging is the process by which cold, dense air acts similarly to a  mountain barrier forcing warmer, less dense air to rise over it       *  The leading edge of a mass of cold air is known as a cold front &         similarly the leading edge of a mass of warm air is known as a         warm front. So this mechanism is associated with cold/warm fronts


Buy Material

Are you sure you want to buy this material for

75 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Anthony Lee UC Santa Barbara

"I bought an awesome study guide, which helped me get an A in my Math 34B class this quarter!"

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."


"Their 'Elite Notetakers' are making over $1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.