New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Principles of Biology II Professor MV (TTh 12:30-1:45)

by: Amanda Merritt

Principles of Biology II Professor MV (TTh 12:30-1:45) Bio 102

Marketplace > University of Rhode Island > Biology > Bio 102 > Principles of Biology II Professor MV TTh 12 30 1 45
Amanda Merritt
GPA 3.5

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

Looking for more in-depth notes to study with? These notes include all pages in the textbook that are required on the first exam. Pictures, diagrams, and equations are all included.
Principles Biology II
Serena Moseman-Valitierra
Biology, Science, URI
75 ?




Popular in Principles Biology II

Popular in Biology

This 24 page Bundle was uploaded by Amanda Merritt on Wednesday February 10, 2016. The Bundle belongs to Bio 102 at University of Rhode Island taught by Serena Moseman-Valitierra in Spring 2016. Since its upload, it has received 66 views. For similar materials see Principles Biology II in Biology at University of Rhode Island.

Similar to Bio 102 at URI


Reviews for Principles of Biology II Professor MV (TTh 12:30-1:45)


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 02/10/16
January 26th  Biological diversity definition o Diversity of all life  3 main types of diversity o Genetic X o Physical ­ morphology  X o Metabolic Textbook Notes 28.1 (pages 506­510) Phylogenetic Trees  Phylogeny: evolutionary history of a group of organisms  Phylogenetic Tree: graphical summary of history, showing the ancestor­descendant  relationships among populations, species, or higher taxa, and clarifying who is related to  whom FOR PRACTICE: Look at BioSkill10 o Branch:Represents a population through time o Node: Represents hypothetical common ancestors, where a branch splits into two  or more branches o Outgroup: A taxon that diverged prior to the taxa that are the focus of the study;  helps to root the tree o Root: Most ancestral branch o Polytomy: A node that depicts an ancestral branch dividing into three or more  descendant branches; usually indicating insufficient data were available to resolve which taxa are more closely related o Tip: Where the taxa themselves are located, end of a branch o Sister Taxa: Tips connected by a single node on a tree  Tree of Life: Most universal of all phylogenetic trees, depicting the evolutionary  relationships among all living organisms  Phylogenetic trees must be estimated from the best available data  Usually morphological or genetic or both characteristics are used to create a data matrix o To reconstruct relationships among contemporary human populations, sequences  of bases are usually compared   Character: any genetic, morphological, physiological, or behavioral characteristic being  studied  Outgroup: A Species that is closely related to the group being studied, but not part of it o Used to establish the polarity of each trait (whether it’s ancestral or derived)  Ancestral Trait: Characteristic that existed in an ancestor  Derived Trait: Characteristic that is a modified form of the ancestral trait, found in an  descendant  o Originate via mutation, selection, and genetic drift  Synapomorphies: Closely related species are likely to share derived traits  Synapomorphy: Trait found in two or more taxa that is present in their most recent  common ancestor but is missing in more distant ancestors (SHARED/DERIVED TRAIT)  Cladistic Approach is based on the principle that relationships among species can be  reconstructed by identifying derived characters ­ synapomorphies  Cladistics was introduced by German biologist Willi Hennig in 1960’s  Synapomorphies allow biologists to recognize monophyletic groups (called clades or  lineages)  Monophyletic Group: an evolutionary unit that includes an ancestral population and all  of its descendants, but not others  Homology: Similarity of organisms due to common ancestry   Homoplasy: Similarity in organisms due to reasons other than common ancestry  Polyphyletic Group: An unnatural group that does not include the most recent common  ancestor  Paraphyletic Group: A group that includes an ancestral populations and some of its  descendants, but not all   Traits can be similar in two species, not because those traits were present in a common  ancestor, but because similar traits evolved independently in two different lineages  Reversal in a change occurs, where A → C transition in a nucleotide in one branch  followed by C → A change in the same nucleotide in a subsequent branch, creating an  appearance that no change occurred  Sometimes the species forms a monophyletic group noe way according to one trait in the  matrix and a different way according to a different way in the matrix  Researchers identify the tree using parsimony: the most likely explanation or pattern is  the one that implies the least amount of change  Biologists use computer programs to count the number of changes in DNA sequences  Tree that implies the fewest overall evolutionary changes is hypothesized to be the one  most accurately reflecting what really happened during evolution  Trees created using cladistic analysis (cladograms) focus on branching patterns   Convergent Evolution: occurs when natural selection favors similar solutions to the  problems proposed by a similar way of making a living in different species  All Hox genes share a 180 base pair sequence called the homebox, it binds to DNA and  regulated the expression of other genes o Products of Hox genes have similar functions  29.3 Pages 538­544 Metabolic Diversity  Bacteria and Archaea are diverse in the types of compounds they can use as food o They both have two fundamental nutritional needs:  Acquiring chemical energy in the form of ATP  Obtaining molecules with carbon­carbon bonds that can be used as  building blocks for the synthesis of fatty acids, proteins, DNA, RNA, and  other large, complex compounds required by the cell  Bacteria and Archaea produce ATP in 3 ways o Phototrophs: (Light feeders) use light energy to excite electrons. ATP produced  by photophosphorylation o Chemoorganotrophs: Oxidize organic molecules with high potential energy,  such as sugars. ATP produced by cellular respiration ­ with sugars acting as  electron donors or via fermentation pathways   o Chemolithotrophs: (Rock feeders) oxidize inorganic molecules with high  potential energy, such a ammonia, or methane. ATP is produced by cellular  respiration, and inorganic compounds serve as the electron donor  Bacteria and Archaea obtain carbon­carbon building­block compounds in 2 ways o By synthesizing their own compounds from simple starting materials such as  carbon dioxide. Organisms that manufacture their own building­block compounds are termed autotrophs o By absorbing ready­to­use organic compounds from their environment  (heterotrophs)   Total of 6 methods for producing ATP and obtaining carbon  o Photoautotrophs o Chemoorganoautotrophs o Chemolithoautotrophs o Photoheterotrophs o Chemoorganoheterotrophs o Chemolithotrophicheterotrophs  Only two of these ways are done by eukaryotes  Certain species can switch among modes of living o Depending on environmental; conditions   Eukaryotes have a simple metabolism compared to bacteria and archaea   Bacteria and Archaea have evolved dozens of variations on the basic processes of  respiration and photosynthesis  The basic chemistry required for photosynthesis, cell respiration, and fermentation  originated in these lineages.  o Use compounds with high potential energy to produce ATP by cell respiration  (ETC) or fermentation  Use light to produce high energy electrons   Reduce carbon from carbon dioxide or other sources) to produce sugars  (or other building­block molecules with C­C bonds)  Then the evolution of variations on each of these processes allowed prokaryotes to  diversify into millions of species that occupy diverse habitats Producing ATP Through Cell Resp.: Variation in Electron Donors and Acceptors:  Cellular enzymes can strip electrons from organic molecules that have high potential  energy and then transfer the high potential energy electrons to the electron carriers  NADH and FADH2 o feed electrons to the ETC where electrons are stepped down from high energy  level to a lower energy level   In eukaryotes: ETC is located in the inner mitochondrial membrane  In bacteria and archaea the membrane is the plasma membrane  Energy released allows different components of the ETC to accumulate a proton gradient  across the plasma membrane o Resulting flow of protons back through ATP synthase (an enzyme) results in ATP  Via chemiosmosis  Summary of Cell Resp,: molecule with high potential energy serves as an electron donor  & is oxidized while molecule with low potential energy serves as final electron acceptor  and becomes reduced o (OIL RIG ­ oxidation is loss of electron, reduction is gain of electron)  Potential energy difference between the electron donor and electron acceptor is  transformed into chemical energy (ATP) or is used in other processes  Most eukaryotes carry out aerobic respiration o Organic compounds with high potential energy (ex. glucose) serve as electron  donor o When cell resp. is done glucose is completely oxidized to carbon dioxide (given  off as a by­product) o Oxygen is the final electron acceptor o Water produced as byproduct  Many bacteria and archaea rely on same molecules o common for them to “employ” an electron donor other than sugars and electron  acceptor other than oxygen during cell resp. o These particular species form different byproducts than carbon dioxide and water  Molecules with high potential energy serve as electron donors  Substances used range from hydrogen molecules (pure hydrogen  gas, hydrogen sulfide, ammonia, and methane)  Compounds with somewhat low potential energy act as electron acceptors  Ex: Sulfate, Nitrate, Carbon Dioxide, Ferric ions [iron ions]) o Both electrons donors and acceptors are diverse for bacteria and archaea  Scientists ask if they undergo cell resp. and if so, how?  Method:  Enrichment Culture Technique  Researchers supply specific electron donors and acceptors and try  to isolate cells that can use those compounds to support growth  their metabolic diversity explains why they are key in cleaning up  types of pollution  Species using organic solvents or petroleum­based fuels as  electron donors and acceptors may excrete waste that are  less toxic than the original compounds Producing ATP via Fermentation: Variation in Substrates  Fermentations: a strategy for producing ATP without an ETC  No outside electron acceptor is used  Much less efficient way to produce ATP compared to cell resp.  In many species: occurs as an alternative metabolic strategy when no electrons acceptors  are available  In some species fermentation doesn’t occur at all  In many bacteria and archaea it is the only way cells make ATP  Some eukaryotes can ferments glucose to ethanol or lactic acid  Some bacteria and archaea are capable of using other organic compounds as a starting  point for the process  Bacteria and archaea that use fermentation as their way to produce ATP are still classified as organotrophs o but much more in substrates used  Different types of bacteria can ferment: o Ethanol o Acetate o Fatty Acids o Glucose o Complex carbohydrates (cellulose, starch) o Proteins o Purines o Amino Acids o Lactose  Diversity of enzymatic pathways observed by bacterial and archaeal fermentations  extends their metabolic capabilities/”repertoire”  Diversity of substrates fermented also supports claim that as a group, bacteria and  archaea can use almost any molecule with relatively high potential energy as a source of  high­energy electrons to produce ATP Producing ATP via Photosynthesis: Variation in Electron Sources and Pigments  Phototrophs use photosynthesis to produce their energy instead of using molecules   Photosynthesis can happen in 3 different ways among bacteria and archaea o Lights activates a pigment (bacteriorhodopsin) that absorbs the light and uses it to transport protons across the plasma membrane and out of the cell  Resulting flow of protons back into cell drives the synthesis of ATP by  chemiosmosis  o Bacterium that lives near hydrothermal vents on ocean floor performs  photosynthesis by absorbing geothermal radiation o Pigments that absorb light raise electrons to a higher energy state  Electrons are stepped down to lower energy states by ETCs  Energy released is used to generate ATP  Requires source of electrons  In cyanobacteria and plants, required electrons come from water o When organism “split” the water molecules to obtain electrons, they generate  oxygen o Species that use water as a source of electrons for photosynthesis are said to  complete oxygenic  “oxygen­producing” photosynthesis o Many phototrophic bacteria use other molecules other than water as a source of  electrons  Hydrogen sulfide  Ferrous ion o Produce elemental sulfur, and ferric ion as byproducts o Type of photosynthesis is called “anoxygenic”  Photosynthetic pigments found in plants are chlorophylls a and b o Cyanobacteria have both  Several other chlorophylls from different lineages of bacterial phototrophs  Each type of chlorophyll absorbs light best at different wavelengths Obtaining Building­Block Compounds: Variation in Pathways for Fixing Carbon  Organisms use 2 mechanisms to obtain usable carbon o Making their own o Getting it from other organisms  In many autotrophs (including cyanobacteria and plants) enzymes of the Calvin cycle  transform carbon dioxide into organic molecules that can be used to synthesize cell  material  o Carbon atom in carbon dioxide is reduced during the process o Said to be “fixed”  Not all bacteria and archaea autotrophs use the Calvin cycle to making building­block  molecules o Not all start out with carbon dioxide as a source of carbon atoms  Animals and fungi obtain carbon from o Living plants of animals o absorbing the organic compounds released by dead tissue’s decay  Methanotrophs: methane eaters (use methane as their carbon source) o Some bacteria use carbon monoxide or methanol as their starting material  Compared with eukaryotes, the metabolic capabilities of bacteria and archaea are more  complex and diverse Ecological Diversity and Global Impacts  Metabolic diversity of bacteria and archaea explain why they can thrive in a wide range  of habitats o Array of electron donors and acceptors, and fermentations substrates allows them  to live anywhere o the evolution of 3 types of photosynthesis (based on bacteriorhodopsin,  geothermal energy, or pigments) extends the types of habitats supportive of  phototrophs  Complex chemistry the cells carry out, along with their numerical abundance has made  them forced of global change throughout history  Bacteria and archaea have altered the chemical composition of the ocean, atmosphere,  and terrestrial environments The Oxygen Revolution  Oxygen = about 21% of the atmosphere  No free molecular oxygen existed for the first 2.3 billion years of Earth’s existence based  on 2 observations o No plausible source at the time Earth formed o Chemical analysis of the oldest rocks suggests that they formed in the absence of  atmospheric oxygen   Early in history the atmosphere was dominated by nitrogen and carbon dioxide  Oxygen we breathe came/comes from cyanobacteria o First became numerous in oceans around 2.7­2.5 bya o 1st organisms to perform oxygenic photosynthesis (“oxygen producing”  One oxygen was common in the oceans, cells could use it as the final electron acceptor  during cell resp. o Aerobic respiration was now possible  Aerobic respiration was a crucial event o Oxygen is extremely electronegative  efficient electron acceptor o more energy is released as electrons move through ETCs with oxygen as the  ultimate acceptor than is released with other substances  Data indicate cyanobacteria were responsible for a fundamental change in the Earth's  atmosphere Nitrogen Fixation and the Nitrogen Cycle  Researchers suggest plant growth is often limited by the availability of nitrogen  Organisms must have nitrogen to synthesize proteins and nucleic acids  Molecular oxygen is extremely abundant in the atmosphere o Most organisms can’t use it because of the string triple bond linking the atoms   To incorporate nitrogen into amino acids and nucleotides o all eukaryotes and many bacteria and archaea have to obtain nitrogen in the form  of ammonia and nitrate  o Certain bacteria and archaea are the only species that are capable of converting  molecular nitrogen to ammonia   Steps in nitrogen fixation are highly endergonic redox (reduction­oxidation) reactions o Key enzyme that catalysis the reaction: nitrogenase o Found in only some bacterial and archaeal lineages  Many of these organisms are free­living, but some have an important relationship with  plants o Some species of cyanobacteria live in association with a water fern and helps  fertilize plants o In terrestrial environments nitrogen­fixing bacteria live in close association with  plants, often taking residence in special root structures (nodules)  When nitrogenase is exposed to oxygen it become irreversibly poisoned and is degraded o Only organisms that have the nitrogenase gene are ones that live in anaerobic  habitats or are able to protect the enzyme from oxygen  Nitrate is produced by some bacteria as a byproduct of respiration  o doesn’t build up in the environment  Instead, other species of bacteria and archaea use it as an electron donor, and it is  oxidized to molecular nitrate o Nitrate is then reduced to molecular nitrogen   Bacteria and archaea are responsible for driving the nitrogen atoms through ecosystems = nitrogen cycle o The same process occurs with phosphorus, sulfur, and carbon Nitrate Pollution  Most crops don’t live in association with nitrogen­fixing bacteria  To increase yields of crops fertilizers are used that are high in nitrogen   Massive additions of nitrogen (mostly in the form of ammonia) are causing serious  pollutions issues  Nitrate molecules are extremely soluble in water and are usually washed out of soil into  groundwater and streams o Eventually reaches the ocean where it causes pollution  “Dead Zone” is caused when decomposers use so much oxygen the oxygen levels  become so depleted there isn't enough for the other organisms o Causes death of fish, and other organisms that require oxygen  Bacteria and archaea, due to their abundance, ubiquity, and processes of chemistry they  have a huge influence on the environment  Lecture 2/2  Cell Rep starts with glucose as an electron donor  Oxygen is electron donor  end with carbon dioxide, ATP, and water   LOOK AT PP TO GET PIC  Requirements of living organisms o C­C bonding o ATP o fjeohf  Feeding Strategies o Humans  Electron acceptor: O2  Electron donor: Glucose  ATP is from: Cell Resp.  Carbon is from: Organic molecules ­­ other organisms o Microbes  Electron acceptor: LOTS,   Electron Donors: LOTS  ATP is from: Cell Pesp, Fermentation, Photosynthesis  Carbon is from: Organic molecules, organisms  29.3 chart: KNOW THIS  Cell Resp: organic or inorganic molecules with high potential energy  We are chemoorganoheterotrophs   Quiz Questions o A prokaryote that obtains energy from light is an: phototroph o Cyanobacteria is an example of autophototroph   First to perform photosynthesis  Microbes that live in hydrothermal vents are examples of:   Nitrification o Electron acceptor: oxygen o Electron donor: NH3 o By product: NO2­ and NO3­  Denitrification o Electron acceptor: NO3­ o Electron donor: Organic C o Byproduct: N2, N2O GOAL: BEING ABLE TO DISTINGUISH DONORS AND ACCEPTORS  What’s so special about oxygen? o Highly electronegative o efficient electron acceptor  Cyanobacteria o responsible for changing the earth's LOOK AT PP   How did eukaryotes gain ability to use oxygen? o All eukaryotes are protists except for animals, fungi, and land plants  How did eukaryotes gain to respire oxygen? o Endosymbiosis hypothesis (means both are benefitting)   Mitochondria comes from bacteria  swallowed whole and continued to live peacefully  mitochondria come from nuclear DNA  o High potential energy compound and oxygen ­­ ETC ­­ high ATP yield o High potential energy compound ­­­ETC­­­low ATP yield 30.3 Pages 559­565 What Themes Occur in the Diversification of Protists?  Protists range from bacteria­sized single cells to giant kelp  Paraphyletic group o Do NOT share derived characteristics that set them apart from all other lineages  on the tree of life  Once an important new innovation arose in protists, it triggered the evolution of species  that live in a wide array of habitats and make a living in diverse ways What Morphological Innovations Evolved in Protists?  Virtually all bacteria and archaea are unicellular  Logical to conclude the first eukaryote was also single­celled  All eukaryotes alive today have o either mitochondria or genes that are normally found in mitochondria o a nucleus and endomembrane system o a cytoskeleton  Based on the distribution of cell walls in living eukaryotes, it is likely that the first  eukaryotes lacked them  Biologists hypothesized the earliest eukaryotes were probably single­celled organisms,  with mitochondria, a nucleus with endomembrane system, and a cytoskeleton, but no cell  wall o Also likely they swam with flagellum  Bacteria and eukaryotic flagella evolved independently   Eukaryotic flagella is made up of microtubules  o dynein is a major motor protein o dynein molecules walk down microtubules  Flagella of bacteria and archaea are composed of flagellin o a protein called flagellin o rotate to produce movement Endosymbiosis and the Origin of the Mitochondrion   organelles that generate ATP using pyruvate as an electron donor and oxygen as the  electron acceptor  Endosymbiosis Theory o mitochondria originated when a bacterial cell took up residence inside another  cell   About 2 billion years ago o “Inside together living” o Symbiosis is said to occur when individuals of two different species live in  physical contact o Endosymbiosis occurs when an organism's of one species live inside the cells of  an organism's of another species  o Debated on when this actually happened o Some think a eukaryote engulfed a bacterium and failed to digest it with its  lysosome o Recent evidence indicates all protists originally had mitochondria,and some lost  them o New idea: first eukaryotic cell may have been formed as a result of  endosymbiosis between two protists   an archaeal host and a bacterium o Celled later developed nuclei and became much larger o Both of these changes seem to have been triggered by the bacterial invader   Relationship between the archaeal host and the engulfed bacterial cell  o mutual advantage existed between them o Host supplied the bacterium with protection and carbon compounds from its prey o Bacterium produced much more ATP than the host cell could have synthesized on its own  Several observations about the structure of mitochondria are consistent with the  endosymbiosis theory o The size of an average a­proteobacterium o Replicate by fission ­as do bacterial cells  duplication of mitochondria takes place independently of division by the  host cell  when eukaryotic cells divide, each daughter cell receives some of the  mitochondria present o Have their own ribosomes and manufacture some of their own proteins  Mitochondrial ribosomes closely resemble bacterial ribosomes in size and  composition  poisoned by antibiotics that inhibit bacterial (but not eukaryotic)  ribosomes o Have double membranes  consistent with the engulfing mechanisms o Have their own genomes  Organized as circular molecules  Much like a bacterial chromosome  Mitochondrial genes code for a few of the proteins needed to conduct  electron transport and RNAs needed to translate the mitochondrial genome  Key was to find data that tested predictions against the theory o that mitochondria evolved within eukaryotic cells, separately from bacteria  “Within­eukaryotes” theory o the genes found in the mitochondria are derived from nuclear genes found in  ancestral eukaryotes o Predicted tested by studies on the phylogenetic relationships of mitochondrial  genes  Researchers compared gene sequences isolated from eukaryotic  mitochondria DNA with sequences of similar genes isolated from  eukaryotic nuclear DNA and with DNA from several species of bacteria   Mitochondrial gene sequences are much more closely related to the sequences from the a­proteobacteria than to sequences from the  nuclear DNA of eukaryotes o As the endosymbiosis theory predicted   Mitochondrial genomes typically encode less that 50 genes,  whereas the genomes of their bacterial cousins code for about 1500 genes o Most of the genes from the endosymbiotic bacterium moves into the nuclear  genome in what was one of the most spectacular lateral gene transfer The Nuclear Envelope  Hypothesis to explain the origin of the nuclear envelope is based on infoldings of the  plasma membrane  Elaborated by mutation and natural selection over time  The infolding could eventually become detached from the plasma membrane o The infoldings would have given rise to the nuclear envelope AND the  endoplasmic reticulum   Evidence to support this hypothesis: o Infoldings of the plasma membrane occur in some bacteria living today o the nuclear envelope and ER of today’s eukaryotes are continuous  The evolution of the nuclear envelope was advantageous  o separated transcription and translation o alternative splicing and other forms of RNA processing could occur  giving the early eukaryotes a novel way to control gene expression  o gave the early eukaryotes a new way to manage and process genetic  information*******  Once nucleus evolves it went through diversification o Ciliates have diploid microtubes that are only involved in reproduction  polyploid macronucleus where transcription occurs o Diplomonads have 2 nuclei that look identical o Foraminifera, red algae, and plasmodial slime molds, certain cells contain many  nuclei o Dinoflagellates have chromosomes that last histones and attach to the nuclear  envelope  Distinctive structure of the nucleus is a synapomorphy that allows biologists to recognize  these lineages as distinct monophyletic groups Structures for Support and Protection  Many protists have cell walls outside their plasma membrane  Others have shells  Others have rigid structure inside the plasma membrane  Novel structures represent synapomorphies that identify monophyletic groups among  protists o the diversification of protists has been associated with the evolution of innovative  structures for support and protection  Multicellularity  Mutations probably first caused cells to stick together  Eventually cells became specialized for different functions  Not all cells represent the same genes  Multicellularity arose independently in a wide array of eukaryotic lineages  An array of novel morphological traits played a key role as protists diversified o the mitochondrion o the nucleus o endomembrane system o structures for protection and support o multicellularity  Evolutionary innovations allowed protists to build and manage the eukaryotic cell in new  ways  Subsequent diversification was often triggered by ways of  o finding food o moving o reproducing How do Protists Obtain Food?  Bacteria and archaea cas use a variety of molecules as electron donors and electron  acceptors during cellular respiration o Some get these molecules by absorbing them directly from the environment o Some make their own food via photosynthesis  Many groups of protists photosynthesize or absorb their food directly from the  environment  Many protists ingest their food o Eat bacteria, archaea, or other protists whole  Phagocytosis  Some protists ingest food along with perform photosynthesis  Important to recognize that all three lifestyles (ingestive, absorptive, and photosynthesis)  can occur within a single lineage  Within each of the 7 major lineages of eukaryotes, different methods for feeding helped  trigger diversification Ingestive Feeding  Based on eating living or dead organisms or on scavenging loosid bits of organic debris  Many protists are large enough to surround and ingest other protists or even microscopic  animals  Feeding by phagocytosis is possible in protists that lack a cell wall o “swallow” prey using pseudopodia “false feet”  Phagocytosis was a prerequisite for the endosymbiosis event that led to chloroplasts  Some protists attach themselves to their prey by cilia that surround their mouth o motion creates water currents that sweep food particles into the cell Absorptive Feeding   When nutrients are taken up directly from the environment o Across the plasma membrane o usually through transport proteins  Common among protists  Decomposers: feed on dead organic matter, or detritus  Parasite: when they absorb nutrients from their host that damages that organism Photosynthesis ­ Endosymbiosis and the Origin of Chloroplasts  Photosystems I and II evolved in bacteria o occur in cyanobacteria  none of the basic machinery evolved in eukaryotes o “stole” it via endosymbiosis  Eukaryotic chloroplast originated when a protist engulfed a cyanobacterium o Once inside, the photosynthetic bacterium provided its eukaryotic host with  oxygen and glucose in exchange for protection and access to light   (Evidence for this on page 564)  Chloroplast genome is very small compared to genomes of living cyanobacteria o most of the original genes were lost or transferred to the nucleus Photosynthesis ­ Primary versus Secondary Endosymbiosis  Occurred in a plant’s common ancestor o That species eventually gave rise to all subgroups in the Plantae lineage o Chloroplasts occur in four other major lineages of protists  Excavata  Rhizaria  Alveolata  Stramenopila o Chloroplast is usually surrounded by more than two membranes, usually four  Hypothesize the ancestor of these groups acquired their chloroplasts by ingesting  photosynthetic protists that already has chloroplasts o Secondary endosymbiosis  Occurs when an organism engulfs a photosynthetic eukaryotic cell and  retains its chloroplasts as intracellular symbionts o Once protists obtained the chloroplast it was “swapped around” to ne lineages via  secondary endosymbiosis 10.1­10.2 Pages 177­184 Photosynthesis Harnesses Sunlight to Make Carbohydrates  Plants convert electromagnetic energy of sunlight into chemical energy in C­C and C­H  bonds of carbohydrates  6CO2 + 6H20 + LIGHT ENERGY ­­­> C6H12O6 + 6O2  Endergonic suite of redox reactions Photosynthesis: Two Linked Sets of Reactions  Cornelius van Niel’s Research was important because o Showed that H2S is the equivalent to H2O is the plant reactions, and CO2 does  NOT combine directly during photosynthesis o Oxygen atoms in CO2 are NOT released as O2  Biologists hypothesized that the oxygen atoms released during plant photosynthesis must  come from water  Two distinct sets of reactions o used light to produce O2 from H2O  o Converts CO2 into sugars  Melvin Calvin = Calvin Cycle  o Reactions that reduce CO2 and produces sugar o Can only function id the light­capturing reactions are occurring  Two reactions are linked by electrons that are released when water is split to for O2 gas o During light­capturing reactions, electrons are promoted to a high­energy state by  light and then transferred through a series of redox reactions to a phosphorylated  version of NAD+ (NADP+)  Forms NADPH+ which functions as a reducing agent similar to NADH  produced in cell respiration  Some energy is released from these redox reactions is also used to make  ATP  Calvin Cycle o electrons in NADPH and potential energy of ATP and used to reduce CO2 to  carbohydrate o Resulting sugars are used in cell respiration to produce ATP for the cell o Plants oxidize sugars in their mitochondria and consume O2  Photosynthesis Occurs in Chloroplasts  When membranes derived from chloroplasts were found t release O2 after exposure to  sunlight it was accepted this is where photosynthesis takes place  Enclosed by outer membrane and inner membrane  Interior dominated by flattened, sac­like structures: thylakoids o often occur in interconnected stacks: grana  Space inside thylakoid is called the lumen  Fluid­filled space between the thylakoids and inner membrane: stroma  most abundant pigment in the thylakoid membrane is chlorophyll How Do Pigments Capture Light Energy?  Light = type of electromagnetic radiation, a form of energy  Photosynthesis converts electromagnetic energy in the form of sunlight into chemical  energy in C­C and C­H bonds of sugar  Electromagnetic radiation is characterized by its wavelength o wavelength determines the type of electromagnetic radiation   Each photon of light has a characteristic wavelength and energy level Photosynthetic Pigments Absorb Light   when a photon strikes an object it can either be absorbed, transmitted, or reflected  A pigment molecule absorbs photons of particular wavelengths o White light: all wavelengths in the visible portion of the electromagnetic spectrum at once o Black light: pigment absorbs all the visible wavelengths/ no visible wavelength of light is reflected   To determine what wavelengths are absorbed by leaves o scientists did a chromatography experiment by mashing leaves up and testing  their pigments  o to find out which wavelengths are absorbed by each molecule, cut out a single  region of the porous material and extracted the pigment to use an instrument to  record the wavelengths absorbed Different Pigments Absorb Different Wavelengths of Light  Two major pigment classes in plant leaves: o Chlorophylls  designated chlorophyll a and b absorb strongly in blue and red region  reflect green light o Carotenoids  absorb in the blue and green regions  appear yellow, orange, or red  belong to two classes  cartenes  xanthophylls  Which wavelengths drive photosynthesis o T. W. Engelman  o laid a filamentous alga across a microscope which was illuminated with a  spectrum of colors o Idea was that the alga would begin performing photosynthesis is response to  various wavelengths of light to produce oxygen o added bacterial cells from a species that is attracted to oxygen o most of the bacteria collected around the violet­to­blue and red regions of the  slide  Action spectrum for photosynthesis o Absorption spectrum: measures how the wavelength of photons influences the  amount of light absorbed by a pigment Which Part of a Pigment Absorbs Light?  Chlorophyll a and b  o Similar in structure o Two fundamental parts  long isoprenoid “tail”  interacts with proteins embedded in the thylakoid membrane  “head” consisting of a large ring structure with a magnesium atom in the  middle  where light is absorbed  structure of beta­carotene has an isoprenoid chain connecting two  rings that are responsible for absorbing light o What is the Role of Carotenoids and Other Accessory Pigments?  Carotenoids o called accessory pigments because they absorb light and pass the energy on to  chlorophyll o both xanthophylls and carotenes are found in chloroplasts o Carotenoids absorb wavelengths of lights that are not absorbed by chlorophyll  extend the range of wavelengths that can drive photosynthesis  Many herbicides work by inhibiting enzymes that are involved in carotenoid synthesis  Carotenoids serve as a protector of chlorophyll o Photons (especially high energy, short wavelength) contain enough energy to  knock electrons out of atoms and create free radicals  free radicals trigger reactions that can disrupt and degrade molecules o “quench” free radicals by accepting or stabilizing unpaired electrons  protect chlorophyll molecules from harm  when carotenoids are absent, chlorophyll molecules are destroyed and  photosynthesis stops  starvation and death follow When Light is Absorbed, Electrons Enter an Excited State  When a photon strikes a chlorophyll molecule, the photon’s energy can be transferred to  an electron in he chlorophyll molecule’s head region o electron is “excited” or raised to a higher energy state o excited electron states that are possible in a particular pigment are discrete  incremental instead of continuous o Can be represented as lines of an energy scale  Chlorophyll doesn’t absorb green light well because there is no discrete step o no difference in possible energy states for its electrons that corresponds to the  amount of energy in a green photon  If a pigment absorbs a photon with the right amount of energy, energy in the form of  electromagnetic radiation is transferred to that electron o the electron now has high potential energy  If the excited electron falls back to its group state the absorbed energy is released as heat  or a combination of heat and electromagnetic radiation  When the electron energy produces light: fluorescence o electromagnetic radiation that is given off during this has lower energy and a  longer wavelength that the original photon did  When photons are absorbed by pigments in chloroplasts, only about 2% of the excited  electrons produce fluorescence  98% of energized pigments use their excited electrons to drive photosynthesis  Chlorophyll molecules work in groups o Antenna complex: accessory pigments are organized by an array of protein called  this and the reaction center o Photosystem: formed when these complexes, along with molecules that capture  and process excited electrons The Antenna Complex  when a red or blue photon strikes a pigment molecule in this, the energy is absorbed and  an electron is excited in response o This energy is passed to the nearby chlorophyll molecule, where another electron  is excited in response  KNOWN AS RESONANCE ENERGY TRANSFER  This transfer is only possible between pigments that are able to absorb different  wavelengths of photons  Organization of the complex makes it possible for this resonance energy to be efficiently  moved between pigments as the potential energy drops each step  Once energy is transferred, original excited electron falls back to ground state o Most of this resonance energy is directed to a particular location in a  photosystem: the reaction center The Reaction Center  when a chlorophyll molecules is excited in this, its excited electron is transferred to an  electron acceptor  when the acceptor becomes reduced, the energy transformation event that started with the absorption of light becomes permanent o Electromagnetic energy is transformed to chemical energy o redox reaction that occurs results in the production of chemical energy from  sunlight  Note: in the absence of light the electron acceptor doesn’t accept electrons o remains in oxidized state because the redox reaction that transfers an electron  acceptor is ENDERGONIC o When light excited electrons in chlorophyll to a high­energy state, the reaction  becomes EXERGONIC  Energy released from these electrons can o Be emitted in the form of light vis fluorescence o be given off as heat slone o excite an electron in a nearby pigment and induce resonance o be transferred to an electron acceptor in a redox reaction  Fluorescence is typical of isolated pigments  Resonance energy transfer occurs in antenna complex pigments  Redox occurs in reaction center pigments 10.3 Pages 185­186 Converting Light Energy into Chemical Energy  Photosystem II o Begins with the antenna complex  transmoits resonance energy to the reaction center  electron is them acceptor pheophytin  o Pheophytin: identical to chlorophyll except lacks magnesium in its head region  Functionally, molecules are very different   Accepting high­energy electrons from the excited reaction center  chlorophylls  Reduction of pheophytin (& accompanying oxidation of the reaction  center chlorophyll pigment) is a key step in the transformation of light to  chemical energy o Electrons that reduce pheophytin are passed through additional carriers to ETC o Redox reactions that occurs in ETC of both photosystem II and mitochondria  result in protons being actively transported from one side to the other o Proton electrochemical gradient forms a proton­motive force  drives ATP production via ATP synthase o Triggers chemiosmosis and ATP synthesis in the chloroplast  Plastoquinone (PQ) o small hydrophobic molecules that transport electrons between molecules o Lipid soluble o Not anchored to the membrane, free to move from one side of the membrane to  the other o When receives electrons from PII, carries them across the membrane to the lumen side and delivers them t more electronegative molecules in the cytochrome  complex o Potential energy released by these reactions allows protons to be picked up from  the stroma and dropped off in the lumen side of the thylakoid membrane o Protons transported by this results in a large concentration of protons in the  thylakoid lumen o Concentration of H+ is 1000 times higher in the lumen than the stroma o Stroma becomes negatively charged o Sets up a large proton electrochemical gradient  resulting in a proton­motive force that drives H+ out of the lumen and into the stroma o Proton­motive force drives the production of ATP o Proton flow down the electrochemical gradient is exergonic that drives the  endergonic synthesis of ATP o Stream of protons through ATP synthase causes conformational changes that  drive the phosphorylation of ADP  Called Photophosphorylation: energy harvested from light o Depends on chemiosmosis Photosystem II Obtains Electrons by Oxidizing Water  Recall Reaction: sunlight + CO2 yields Sugar and O2  O2 must come from H2O  Water must be oxidized for this to happen  2H2O → 4 H+  + 4 e­  + O2 o Splitting of water o Supplies electrons for photosystem II  o catalyzed by enzymes that are physically integrated into photosystem II complex o High endergonic reaction o Light energy harvested in photosystem II is responsible for splitting water  Excited electrons leave Photosystem II and enter ETC, photosystem  becomes so electronegative that enzymes can remove electrons from  water, leaving protons and oxygen  Photosystem II is the only protein complex that can catalyze the splitting of water  molecules  Perform oxygenic photosynthesis: generate oxygen  Other organisms use different electron donors, such as H2S in the purple sulfur bacteria:  anoxygenic photosynthesis


Buy Material

Are you sure you want to buy this material for

75 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Anthony Lee UC Santa Barbara

"I bought an awesome study guide, which helped me get an A in my Math 34B class this quarter!"

Bentley McCaw University of Florida

"I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"


"Their 'Elite Notetakers' are making over $1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.