New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

363 Ecology with Alexander- Class Bundle

by: Mary-elizabeth Notetaker

363 Ecology with Alexander- Class Bundle Bio 363

Marketplace > University of Louisville > Biology > Bio 363 > 363 Ecology with Alexander Class Bundle
Mary-elizabeth Notetaker
U of L

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

All lecture notes for the semester included. Best used as flashcards: words in blue either describe or fill in the blank of what follows it.
Dr. Alexander
Bio, Biology, Bio363, Ecology, Alexander, Louisville, Biology363
75 ?




Popular in Ecology

Popular in Biology

This 79 page Bundle was uploaded by Mary-elizabeth Notetaker on Tuesday April 19, 2016. The Bundle belongs to Bio 363 at University of Louisville taught by Dr. Alexander in Spring 2016. Since its upload, it has received 20 views. For similar materials see Ecology in Biology at University of Louisville.


Reviews for 363 Ecology with Alexander- Class Bundle


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 04/19/16
Exam 1 1. organism a single individual of a species 2. population all individuals of one species in a defined area 3. emergent properties attributes or properties that are not present at the individual or lower levels of the hierarchy of life 4. species/biological species concept all individuals in a given area that potentially can mate and produce fertile offspring 5. community all populations in a defined area that can interact 6. ecosystem all interactions within a living community and all of the interactions between the organisms and their  surrounding nonliving physical environment 7. watershed a type of ecosystem that consists of all of the area drained by a single stream 8. environment for an organism it consists of all of the abiotic and biotic factors that a single organism is exposed to  at any point in its life 9. landscape ecology level of ecology that examines the spatial variation in the regional landscape and how this variation  affects ecological processes, such as the distribution and flow of energy, materials, or organisms  within those patches 10. biome a community of large geographical extent characterized by the dominant plants of the climax  community found in that area have a distinct climate pattern and soil type associated with the community 11. biosphere consists of all ecosystems and living things on earth  12. physiological ecology the study of the specific effects of abiotic factors on the distribution and abundance of organisms, as  well as the study of the physiological adaptations used by an organism to survive and reproduce in a specific environment 13. adaptation/ acclimaton/ acclimization a short term process of adjustment of an individual to an environmental stress 14. adaptation a long­term process of evolutionary modification where the modification of a trait results in improved  survival and reproduction among individuals, and the effects are observed in a population over the  course of ecological time (over many generations) applied at the level of the population 15. evolutionary adaptation any morphological, developmental, biochemical, or behavioral character that enhances the survival  and reproduction of an individual 16. fitness the relative genetic contribution to future generations by an individual, relative to others in the  population 17. law of tolerance different species have different ranges of tolerance to physical conditions, and these ranges are  often correlated with the environment that the organisms live in example: represents the range of temperatures that the organisms can withstand and survive 18. Shelford's Law of Tolerance law that states that the absence or failure of an organism to persist in an area is due to an excess or  deficiency of one or more environmental factors  19. reproduction, survival the narrower range of tolerated conditions over which __ can occur usually dictates where the  species can exist indefinitely; the tolerance range for __ is the broadest 20. zone of optimum an intermediate range in which many organisms can thrive, at their end of this can be found the  upper and lower levels of tolerance 21. zone of intolerance conditions under which the organism cannot survive for any long period of time  22. Liebig's Law of the Minimum law that states that the growth or survival of an organism is strongly limited by that essential element or nutrient (limiting factor) that is currently present in the shortest supply in proportion to the  organism's needs  23. eurythermal organisms that have a wide range of tolerance to different temperatures 24. stenothermal organisms that have a narrow range of temperature tolerance  25. avoidance leaving areas where organisms are subjected to harsh environmental conditions example: migrating or becoming dormant 26. conformers as the environmental conditions change, the internal conditions of these organisms change in some  proportional way example: marine invertebrates ` 27. regulation organisms that regulate the internal environment, regardless of the changes in the external  environment is also the process of homeostasis and refers to the ability to maintain internal physiological  conditions in spite of external conditions example: birds and mammals 28. conformers and avoiders small, invertebrate animals tend to be __ and __ when it comes to environmental change  29. avoiders and regulators larger, vertebrate animals tend to be __ and __ when it comes to environmental change  30. thermal inertia a phenomenon that occurs in larger animals in which they are slower to warm up and cool down and so they can be active for longer periods of time in more inhospitable habitats than can smaller­sized  animals  31. conform, regulate plants generally __ when it comes to environmental changes but they can also __ some adaptations  such as the rate of growth, number of leaves, and timing of reproduction  32. temperature value relating to the average kinetic energy of the molecules of a substance 33. heat a measurement of the total energy found in a substance the transfer of energy between substances of different temperatures 34. latitude, tilt, time of year the amount of solar energy hitting an area depends on the __ and __ of the Earth, as well as the __  35. Coriolis effect near the equator, the prevailing surface winds that are flowing in towards the equator move slower  relative to the Earth moving below them. these surface winds appear to deflect to the right in the  northern hemisphere and to the left in the southern hemisphere  36. Tradewinds (tropical easterlies) basic surface wind patterns near the equator that tend to come from the east 37. westerlies winds between 30 and 60 degrees north and south that in the north tend to come from the SW and  the south come in from the NW 38. polar easterlies group of prevailing winds that are found at about 60 degrees north and south 39. intertropical convergence zone the latitudinal belt where surface winds along the surface converge and lift, creating rain. It shifts  with the seasons, crossing back and forth over the equator 40. high, low surface winds are caused by the uneven warming of the atmosphere, causing air to flow from areas  of __ pressures to areas of __ pressures 41. warms, rises low pressure areas form when the air __ and __ either because the air is over a warm land or ocean  surface, or because the air is warmed by the condensation of water vapor in storms  42. troposphere counterclockwise, clockwise when warm air rises, it pushes air in the upper __ to flow away, creating low pressure in that area,  causing higher pressure air around it to flow in towards the low results in the __ wind flow around the low pressure in the northern hemisphere and a __ wind flow in the southern hemisphere 43. shrinks, sinks increasing high pressure areas form when an air mass cools, it __ and __, causing surrounding air in the upper  troposphere to fill up the extra space, __ the air pressure felt on the Earth's surface in that area 44. intertropical convergence zone because the __ moves with the seasons, two rainy and two dry seasons in areas near the equator 45. subtropical these habitations have two seasons based on rainfall: one rainy and one dry 46. Tropics or the Tropical Zone the region of the Earth that lies between the Tropic of Capricorn and Tropic of Cancer 47. North Temperate Zone  the region of the Earth just south of the Arctic Circle  48. temperate, polar __ and __ regions generally have four seasons, based more on temperature than on rainfall 49. vaporizaton, latent ocean currents affect global and local climates, because of the high heat of __ and high __ heat of  water 50. Northern, Southern ocean surface waters tend to move clockwise in the __ hemisphere and counterclockwise in the __  hemisphere, forming gyres 51. Gulf stream a current of warm water that spirals out of the Gulf of Mexico and heads toward Northern Europe,  keeping the coastal climates of the British Isles and Scandinavia much milder than what would be  expected at their latitudes 52. gyres eastern, western the east and west coasts of continents at the same latitude often differ in climate in part because of  the motion of __ along both coasts currents along the __ coast tend to be warmer, coming from the south, than the currents off the __  coasts, which are coming from the north 53. heat energy surface and deeper water currents collectively form a vast conveyor belt, transporting __ from one  part of the world to another 54. upwelling __ of cold, nutrient­rich water from the ocean's depths occurs near the equator, where the surface  equatorial currents diverge it occurs along the coasts, where the winds deflect the surface currents away from land which allows nutrient­rich colder water to come to the surface, increasing productivity 55. tides caused primarily due to the gravitational effect of the moon and sun 56. Ernst Haeckel scientist accredited with coining the word "ecology" 57. directly the tide­producing force varies __ with the mass of the moon and sun 58. inversely the tide­producing force varies __ with the square of the distance of the moon and sun from the  earth 59. intertidal/ littoral zone land area that is above the low tide mark and below the point of high tide; the area that is exposed to the air at low tide and submerged at high tide  60. subtidal zone the section of area that is below the low tide mark and thus is rarely exposed to air 61. supratidal zone the land area just above the high tide mark 62. adiabatic cooling cooling due to decrease in pressure and expansion of a parcel of air (occurs as warm air is forced upward by mountains) 63. rain shadow the effect created by air being forced upward by mountains and the formation of rain on the  windward side of the mountain but a dry environment on the leeward side of the mountain 64. ectotones sharply delineated spatial transition zones between two distinct ecosystems or habitats  65. aspect the direction a particular slope faces is important with respect to local climatic conditions 66. poles the greatest variation in temperature on the planet is near the __ 67. 50 degrees C the maximum temperature at which we can find most forms of life  68. dimictic lake a lake that mixes and stratifies twice a year 69. amictic lake a lake that never turns over and mixes in the terms of a year 70. spring the season in which the ice in a lake melts and the water is warmed to a uniform density and  temperature and can be turned over from the wind blowing over it  71. summer the season in which the surface water in a lake warms and becomes less dense than the deeper,  cooler water, leading to stratification of the lake which cannot be turned over by wind 72. fall the season in which the water in a lake will begin to cool, leading to uniform temperature and density of the water than can be turned over by the wind  73. winter the season in which the surface water of a lake freezes, creating an inverse stratification 74. ground water  small spring­fed streams change very little in their diurnal and seasonal temperatures because of the constancy in the temperature of __ 75. stratification compared to the lentic water of lakes and ponds, the lotic water of rivers is usually well­mixed, so  there is generally very little __ 76. equilibrium body temperatures are primarily due to the __ of the losses and gains in heat energy by the  organism 77. specific heat capacity the __ of a substance is the amount of heat energy to raise 1 gram of the substance by 1 degree C 78. H(total) = H(m) + H(cd) + H(cv) + H(r) + H(e) M = heat produced by metabolism CD = conductive heat exchange CV = convective heat exchange R = radiation heat exchange from the sun E = evaporative heat exchange heat balance equation 79. radiation the heat transfer that takes place without direct contact between two objects  80. 30 degrees most of the Earth's deserts are found at this latitude because the air draws moisture from the surface of the Earth here as it warms up and moves toward the equator and the poles  81. Counter­clockwise, clockwise In the northern hemisphere, winds flow __ around a low pressure and __ around a high pressure. In  the Southern Hemisphere it is the opposite 82. ecological landscape heterogeneity of regional landscape.. discrete patches 83. albedo proportion of short wave radiation that reflects off earth(0­1%) avg overall: 0.3­0.35% 84. windbelts cells of revolving air 85. Hadely Cells windbeltf rmo 0­30 deg(tropics) 86. Ferrel cells widnbelt from 30­60 deg(mid range) 87. polar cells wind belts from 60­90 deg (high/low areas) 88. intx of winds, moisture, and t.. cool dry air falls back to earth around 30 deg and warms then goes  towards eq and poles, taking moisture from the surface as it does cause of desert & high rain areas: 89. jet streams fast flowing upper air currents that form at the int of the large air circulation wind belts and move  west 90. n: clockwise around high, counterclock around low s: counterclockwise around high, clockwise around low N hem winds go __ around H pressure and __ around low P. S do(same question) 91. greenhouse effect atm acting as thermal blanket 92. gyres massivae ir movements from surface winds and coriolis effect 93. overhead on horizon high tide: moon ___ low tidemoon:  ___ 94. littoral zone area of body of water close to shore 95. in N hemisphere, the __ slope gets more solar radiation than the __ n s 96. temp can vary over ___ deg yearly in terrestrial habitats 100 97. water is a good conductor of ___ e bc of high hear capacity... changes slowly 98. solar constant 2cal x cm^­1 x min^­1 light intensity that reaches the upper part of the atm 99. boundary layer  still layer of air next to skin that min evap and conv heat loss 100. conduction direct transfer of heat by contact 101. convection transfer of e to/from body surface from movement of gaseous/fluid medium(disrupts boundary layer) 102. relative humidity air t relative to humididty (comfort index) high RH=dec in evap heat loss 103. evapotranspiration evap heat loss in plants 104. endotherms maintain constant body t from internal heat from met 105. BMR(basal metabolic rate) maintains internal body t at rest under normal conds  inc w smaller size 106. TNZ(thermoneutral zone zone) where BMR stays constant inc insulation=inc TNZ(bc retains heat longer) 107. ectotherms conform to outside t from envir... lower met rate (costs to produce many enzymes) 108. aestivation avoiding lethal t's 109. rete/countercurrent exchange mechs complex network of arteries and veins that exchange heat, ions, or gases using countercurrent  exchange to cool 110. counter current mechs(cool) lower heat loss to extremeties... temporal alteration of blood flow 111. torpor temporary drop in body t to lower met rate adn save e 112. ST(shivering) evoked by slight drop in core t to produce heat 113. NST(nonshivering) ox of BAT cells to convert ATP to ADP, uncouples membrane bound proton pump from ATP  producing and BAT warms rapidly 114. antifreeze lowers fp of water... glycol p's/glycerceol 115. cline ecotones that a series of bio comms show continuous gradient 116. cell memb fluidity at cool more viscous.. phospholipids gte closer ...more unsat fat=more fluid 117. cholesterol warm: restrains phospholipid movement cold: prevents close packing of phospholipids 118. MTE(metabolic theory of ecology) met rate of orgs is fund bio rate that governs ecological patterns Kleiber: animals met rate scales to 3/4 power of their mass(Q=aM^b) 119. thermocline depth at which t and d changes are greatest 120. hypoosmotic more salt inside than outside 121. hyperosmotic more salt outside than inside(water moves by osmosis) 122. met water water from food breakdown(behavioral) 123. ammonotelic excretion toxic ammonia 124. ureotelic urea 125. uricotelic  uric acid 126. sat pt light intensity inc to a pt that it is no longer the LF for photosynth  127. euphotic zone depth aq plants can live in (lower limit=comp pt) open well lit layer(200m) photosntyh by plankton 128. compensation pt pt in photosynth where rater=espiration rate (co2=02) 129. photoperiod length of light/dark portions of day... helps orgs know time of day/yr 130. diurnal cycle 24 hour cycle 131. crepuscular animals most active at dawn/dusk 132. endogeneous clocks intertidal orgs have these... governs activities for day even if removed from envir 133. tundra polar treeless plains low rain and low t grasses, mosses, low shrubs lareg predators, small rodents, many insects animals migrate here during growing season in S permafrost­ permanently frozen ground 134. coniferous forest(tiaga/boreal) cold climates in n hemisphere coniferous trees that can withstand cold and drought short growing season and long winter bears, wolves, deer, mooes, squirrels, rabbits, and many roendts, waterfowl, owls, and eagles low rain, poor soils 135. temperate deciduous forest warmer conditions.. 4 seasons longerg rowing season deciduous trees(oaks, maples, hickories).. many platns wide variety of large/small orgs rich soil 136. temperate grasslands dry.. praries deep rich soils herbivores, large migratory animals 4 seasons rainfall highest from spring to fall 137. tropical savannas tropical grassland w scattered trees little t variation wet and dry seasons from hadley cells and ITCZ shifting infertile soils large animals thta migrate w rains 138. temperate shrubladsn chaparral poor soilslot, s of fire scattered trees plants dormant during dry season 139. chaparral mediteranian climates mild winters w lots of rain hot dry summers 140. tropical rain forest high species diversity poor soils=rapid nutrient cycling high humidity 141. deserts low rain specialized plants that capture and conserve water reptiles and small nocturnal animals most pronounced t diff btwn day and night 142. 3.5% amount fo salts in marine biomes 143. costal benthic kelp, seaweed, snails, crabs, worms, seastars 90% ocean species live here bc high in nutrients 144. benthic bottom dwelling hbaitats 145. estuaries(salt marshes) partially enclosed costal areas at river moutsh(brine) rich and diverse nursery grounds for marine species 146. mrinae/freshwater wetlands covered all or part of the yr w water 147. swamps wetlands w trees 148. marshes wetlands w/out trees 149. bogs wetlands that accumulate peat(partially decayed vegetation) 150. river floodplains constantly overflowing rivers 151. bethypelagic layer deep ocean 152. abyssal zone deepest lightless ocean 153. lentic habitats nnoflowing/standing water 154. reservoirs  manmade lakes 155. drainage area area where runoff from land goes into streams that feed lake 156. eutrophic lakes excess nutrients greenish and smelly from high decomp shallow, phytoplank, plants, animals 157. oligotrophic lakes lakes with low nutrients 158. eutrophication bio/physio changes in lake from excess nutrients from pollution,  sewage, runoff inc of nutrification over time from human activity 159. first order streams smallest streams, drain small pond or stream Exam 2 1. geographic range of species total observed geo area in which the species currently exists 2. density number of orgs per unit area or volume 3. dispersion spatial distribution in which indiv's are spaced out in the habitat 4. home range area in which an animal lives and spends most of its time moving through 5. territory small land in which an animal lives and spends most of its time moving through 6. clumped dispersion often adaptation to envir stress 7. coeff of dispersion CD < 1: (mean>variance)(uniform) CD near or ­1: (mean­variance) CD>1: (mean<variance)(clumped) 8. poisson distribution random dispersion 9. dispersal movement/transport of orgs across space 10. passive dispersal orgs carried by the medium(air/water) 11. active dispersal crawl/walk/fly/swim to diff envir 12. diffusion gradual movement of pop across hospitable terrain 13. jump dispersal movement of indiv orgs across large distance that is unhospitable and successfully estb new pop 14. secular dispersal gradually occurs over evol time..eventually becomes another species 15. birds­­ female dominated mammals­­ male dominated diff in dispersal btwn birds and mammals? 16. neighborhood size number of conspecifics that an org could meet thru its life and w/whom the indiv potentially can mate 17. St dispersal distance of avg indiv over its lifespan 18. migration mass directional movement of a species from one location to another 19. dispersal movement of indiv from one another 20. diurnal/tidal patterns org move on daily basis from one microhabitat to another 21. multiple­return migration animal migrates and returns several times during its life on several occasions  22. metapopulations occur when pops are divided into subpopulations with partially indep local pop dynamics series of local pops linked by dispersal  23. patch homogeneous habitat 24. probability of local extinction(e) Pn=(1­e)^n e=0:certain persistance e=1:prob of extinction is certain for that time scale e=0.3: 30% chance extinction and 70% chance persistance 25. prob of regional persistence Px=1­(e^x) prob that at least 1 subpop will persist after 1 yr 26. P0 is the fraction of patches that are occupied =0 if no patches occupied 0=1 if all patches occupied 27. dP0/dt=m(PO)(1­P0)(e*PO) m= prob of local immigration 28. extinction rate E­(ePo) when: dP0/dt>0, pop persists with P0 sites occupied at one time patches at eq: Peq=1­(e/m) where e cannot be greater than m 29. assumptions of levin metapop model: ­local subpops either at K or rxtinct, so only distinction or colonization ­homogeneous patches w/ only 1 subpop ­no spacial stx ­total pop irrelevant ­subpops independent ­no time lags(dP0/dt changes in a variable ­e & m constant many patches could be colonized 30. metapops behave as large single pop when high migration and low extinction bad when no mig and high extinction 31. mark recapture teqs (N/F)=(S/R) best for mobile animals N=unknown animal F=# marked released R= #marked later 32. mark recapture teqs large fraction of pop can be collected at random all indiv have = prob of capture no change in N by anything during sampling time marks not lost marked indivs have time to disperse randomly  33. quadrant sampling n=T(avg) T=total # quads 34. quadrant sampling assumptions appopsr ize quad quads chose randomly use enough quads orgs randomly dist'd one habitat type sampling done at same time 35. dispersal barriers prevent colonization due to physical obstructions 36. ideal free distrib(IFB) ­orgs distribute to max fitness 37. IFB assumptions ­indivs ideal w/complete knowledge of patch quality ­orgs have freedom of choice ­indivs have equal fitness ­indivs select patch to max fitnes ­no territoriality patch quality dec w/in density 38. ­# indivs per patch proportional to fraction resources in patch ­resouce used eq in indivs if IFD assumptions are met: ­# indiv per patch is proportional to fraction of resources in that patch ­intake of resources per indiv is equal across all patches 39. diffusion gradual movement of pop across hospitable terrain 40. territory small land in which animal lives and spends most time moving thru 41. active dispersal crawl/walk/fly/swim to diff envir 42. jump dispersal movement of indiv orgs across large unhospitable distance to successfully estbl new pop 43. density # orgs per unit area/V 44. dicrete model pop rep and dies before next pop reaches maturity ­one gen at time ­ net replacement dec w/higher density ­at R0­0 pop is eq and stable 45. overlapping/continous model grows following integral form of exp growth 46. differntial form of exp growth eq find change in pops size from one t to anothre 47. natality b rate 48. max b rate 49. mortality d rate 50. min d rate very few d's// only from old age 51. rate of rep inc varies in direct proportion with pop(N) 52. biotic potential intrinistic rate of inc...power of pop to inc in # under optimal conds 53. logistic growth s shaped curve.. max pop lvls off at K summ around (K/2)=when dN/dt is highest 54. differential eq change in #indivs added/removed from pop over time fx of: r, N, [(K­N)/N] 55. lag time imitates envir disturbance 56. stochasticity allows for change in r from predators, storms, etc can mimic deterministic model over time 57. density indep  abiotic facs not dependent on pop size (fire) 58. density dependent biotic facs.. stabilize N 59. allee effects dec in b/servival rates at low N(short lived orgs) when N<A pop will decline to extinction 60. survivorship prob of surviving to age x 61. type I survivorship mortality late in life, offspring survival inc(mammals) 62. type II surv mortality constant w age(birds) log transformation causes straight line 63. type III mortality high in yound(plants & inverts) 64. fecundity(mx) # female offspring per female at age x 65. life table age specific survival & fecundity rates used to predict pop growth 66. cohort/hoiz life table followed thru time til last dies(best) 67. vertical/static life table look at age stx at entire pop on 1 day find distrib of decundity w age and use relative abundance of age classes to estimate survivorship easier and less time but not as good of results 68. fast pop growth short gen time= 69. intrinistic rate of inc gives estimate of pop growth 70. net pop change(humans) subt # ppl leaving pop from # entering during time t 71. less longer gen time= __ offspring 72. RLFR(replacement lvl fertility rate avg # kids each couple must have to replace themselves (world pop: 2.1) 73. TFR­ total fertility rate projection of # live kids avg woman will have 74. age stx #/%ppl at each age lvl pre/re/post 75. age dependency ratio ratio of dependent age ppl to working age ppl 76. demographic transition stages 1­ high b & d 2­ low d but high b 3­ low b & d 4­ postindustrial staeg­ b rates decline so that pop is sustainable and allows economic growth 77. current diseases will not prevent pop inc, but new could cause crash 78. lf for humans under/malnourish 79. agroecosystem abnormal/novel ecosystem from farming 80. agroeco and normal diffs stop/slow eco succession in farms/parks monocultures­ endanger crop to disease/pests and drain soil nutrients uniform plant dispersion, causes need for insect/herbicides food chains simpler and shorts plowing causes erosion and soil damage and dec org matter/nutrients large amts inorg fert to support high yield pest evol sped up 81. soil weathers rock, humus, orgs, air, nutrients, water 82. residual soild from bedrock weathering 83. loess soil blown in from other areas 84. alluvial soil brought in from rivers 85. glacial till soil from glaciers 86. 0 soil horizon plant litter and humus 87. A soil horizon dark, decomposers, leaching rainfall, topsoil 88. E soil horizon light, max leaching of ions 89. B soil horizon accumulation.. fark/red clays, metal oxides, subsoil 90. C soil horizon slihgt weathering, hard and impermeable 91. R soil horizon unweahtered bedrock 92. soil skeleton influences water capacity and amt of drainage (pores) 93. saturated soil morewater than pore can hold 94. gravitational water temp... fills large spaces, goes to groundwater 95. field capacity amt water left in ffields fter a few days(inc by soil size variety) 96. capillary water main source of water for plants 97. hygroscopic water tightly absorbed in soil, unusable by planst 98. soil sustainability practices contour plowing(plow parallel to slope of land to dec erosion) no/low till(stems/roots left to give nutrients) strip/terrace(lvl strips at correct angle) rotation/polycultuer(retains micronuts) green manure­ plow under N rich crop to add nutrients when they decompose 99. diff btwn domestic and wild plants dom are cultivated(protected) dom may not survive inw ild(diff tols) low genetic div, more susceptible to new pathogens diff look to inc e in edible parts depend on lots of water and fert 100. ways to inc food supply eat lower on food chain better irrig inc land used for agric genetic engineering grow diff plants on same lannd grow local 101. mariculture culture marine orgs 102. aquaculture culture freshwater orgs 103. hydroponics grow plants in greenhouse water sols 104. green rev 105. afdditives chems to inc taste, nutrition, color, texture 106. polyvarietal variation several genetic varieties of crop grown at once(dec disease total loss) 107. agroforestry trwes grown w crops on same field 108. biocides pesticides 109. molluscides snail and clam pesticides 110. nematocides roundworm pesticides 111. most desriable pesticide traits 112. botanicals oils/soaps/nat chems from plants 113. chlorinated hydroc's affecct NS(most toxic and water sol) DDT banned bc last too long and biomag 114. organiphosphates affect NS break down faster in soils more toxic to humans(have S and P) parathion, malathion,diazinon 115. carbmate short lived in envir effect NS sevin 116. biodegradable less persistent in envir nontoxic to mammals and birds 117. undesirable pesticide attributes nontaget toxixity bio accum/mag evolved immunity secondary pest outbreaks kill species far from app site 118. carson author of silent spring about ddt killing birrds and hurting good orgs 119. biomag sst stores in fat and builds up in orgs and is transferred to orgs that eat them inc as go up food chain 120. bioaccum stores in fat and bones 121. integrated pest mgmt nat dec pest so red need for pesticides/ferts 122. IPM practices crop rotation fallow land countour farming leave trees on edge of crops no till farming min fert/pesticide use bio controls(nat pest enemies) 123. chemical biocontrols species specific, little gen resistance, effective in small amts, nonharmful to other species 124. pheromones bait traps to prevent fert of normal females 125. hormoe bio controls  interfere w life cycle 126. irradiated insecrs sterile males bio control 127. alleleopathy plants produce chems toxic to other weeks insects 128. secular dispersal gradual over evol time. species evolves in place over time and eventually becomes new species  129. Richard Levins created deterministic model where there are extinctions of local pops, but entire pop does not go  extinct bc of migrations to other patches assumes local pops at K or extinct metapopulation model 130. steve fretwell habitat selection based on IFD model 131. charles darwin said exp growth could occur in all orgs 132. JBS Haldane said must be LF that explains how many indivs are present 133. raymond pearl created survivorship curves 134. lxmx age class contribution to next gen 135. xlxmx weighted contribution to next gen 136. aj lotka came up with rate of intrinistic inc 137. garret hardin wrote tradgedy of the commons Exam 2 equations  1. coeff of dispersion (s^2)/(x bar) 2. prob for any 1 subpop to last t yrs Pn=(1­e)^n 3. prob of regional persistance Px=1­(e)^x x= # subpops 4. occupied patches dPo/dt=mPo(1­Po)­ePo 5. immigration/colonization rate C=mPo(1­Po) 6. extinction rate E=ePo 7. intrinistic rate of inc r=b­d+i­e 8. mark recapture N=(FS)/R 9. quadrant number  N=T(x bar) 10. discrete pop growth model 11. integral form of exp growth 12. integral form of logistic growth 13. logistic differential eq (dN/dt)=rN[(K­N)/K] 14. # live at beginning of interval x 15. proportion of cohort still alive at start of interval x lx=(nx/n0) 16. net replacement rate 17. gen time(avg yrs btwn b of mom and all offspring) 18. estimate of growth rate of a pop r=(lnR0)/G 19. doubling time DT=[ln(2)]/r 20. coeff of dispersion Exam 3 1. 1.5 mil How many species are there? Excluding bac and archae 2. Arthropoda Nematodes Molluscs Protozoan Bac Fungi Flowering plants  Fish most abundant groups of orgs? ANMPBFFF 3. Exotic species Species that have been introduced to a new area Ex) zebra mussels 4. Endangered species Species in severe decline facing high risk of going extinct in Wild ex) tiger/orangutan 5. Vulnerable species Species that face high risk of going extinct in Wild  Ex) African lion 6. Endemic species Species in one native habitat Ex) galapigose tortise 7. Ubiquitous species Found in wide variety of ecosystems an habitats over broad geographic area  Ex) house sparrow 8. Aesthetic Ecological  Intellectual Obligatory Utilitarian Reasons to preserve diversity? A E I O U 9. Ecological reasons Ecosystem health depends on all species in comm Comm: recycle nutrients, remove toxic mats, refresh/replenish air/water Species are valuable in ecosystem fx 10. Pollution control Plants/bac remove toxic subs from air, water, soil  Diversity of species works best 11. Ecosystem services Some ecosystems benefit and help sustain humanity & economy Detox, purify, reduce severity of droughts/floods, soil conservation/erosion prevention, nutrient  cycling, pest control food prod 12. CO2 Recycle  Oxygen Forest are imp ____ sinks and ____ many nutrients and create __ 13. Robert Constanta 17 16 125 Person who Made estimate of value of world's ecosystems(everything) Total:___ categories of ecosystem services __ diff biomes Total 16­54 tril annually .. Avg 33tril ...low min .. Revised to ___ tril in 2011 14. Gas reg                       food production Climate reg                   raw materials Disturbance reg             genetic resources Water reg                  recreation value Water supply             culture Erosion control Soil formation Nutrient recycling Water treatment Pollination Biological control  Refugia Of 17 categories of ecosystem services GCDWWESNWPBRFRGRC 15. Ethic principles Rules of conduct laid down by higher religious/secular authority  Anlso: Protect biodiversity Owe it to future gens 16. Include statements concerning rights of orgs to exist UN General assembly world charter for nature Us endangered species act Both... 17. Deep ecology Conviction that all creatures have right to exist and humans should not cause extinction of other  living things 18. Direct/indirect benefits(building mats/E, mess, food) Utilitarian reasons (economic/medical)  D/I B's Justification based on potential benefits of species and species biodiversity for human benefit 19. Improve crops, yields, heat/cold hardiness, inc disease resistance Genetic characteristic benefits Inc 1bil in US per yr 20. Tropic plants Coral reefs(from species that produce toxins) Chems extracted from animals Chem/med uses ~25% prescriptions in US have active ingredients from natural wild vascular plants 21. Exs of med imp of mats from wild plants: digitalis­ heart drug from foxglove plan aspirin from willow bark extracts  rosy periwinkle chems can treat cancer taxol from pacific yew tree 22. Ecotourism 'Shooting' of big game in Africa w cameras and not guns 23. More diverse communities survive and respond better to envir stress Must conserve habitats not species ... Old theory 24. Resistance stability Analogous pattern  Ex) oak.. Moderate disturbances do not move it willow thrashes around in wind  ..must be max # species and types needed  (1970s) 25. Resilience New theory  More diverse comm more stable 26. Resilient/resilience stability Smaller declines in productivity in response to disturbance, and return more quickly than others Stability can have 2 diff meanings(able to survive in harsh conds or broad and hard to break) 27. Rivet hypoth of species diversity Paul and Anne Ehrlich Each species plays a small role in proper FC of comm. each extinction rep's loss of 'rivet' popping  out and weakening it After so many, comm will fall apart Hypoth ____ by ___ 28. Redundancy hypoth odd species diversity Brian walker Most species are replaceable by others Loss of one species partly compensated by inc in similar species  Comm still stressed Hypoth by ___ 29. Local extinction species disappears from one part of range from one habitat 30. Global extinction Complete disappearance of species 31. Mass extinction event Many species simultaneously go extinct Ex) Cretaceous­tertiary extinction: Dino's die Possibilities: asteroids, volcano, plate tectonics 32. Specieation Extinction Creation of new species evolving from previously existing species Opp of __ 33. Envir risk Not catastrophes  Genetic risk Human action Causes of extinction: ENGH 34. Envir risk Chance variation in Phys/bio. Envir that impacts pop size 35. Extinction a Book by Ehrlich  Described pop of butterflies. Food killed. Pop dies, plants come back next year. Small endemic  species more at risk than long lived species 36. Nat catastrophes Storms, earthquakes, fires, ocean current changes, other events 37. Genetic risk Chance genetic changes occurs and is detrimental to survival  38. Genetic drift, Smaller and less genetically variable pop more prone for deleterious mutations that spread thru pop 39. Extinction from human actions Many amphibians, bees, disappearing in US. Affects crops. Agaves dug up, hurts bats.  Exs of___ 40. Habitat loss Introduced species Human pop growth  Human overconsumption of resources  E.O Wilson HIPPO concept by ____ 41. Fragmentation Reduces and limits pop growth size and distribution  Greatest threat to biodiversity  Leaves "edge" ecosystems 42. introduced species species introduced by humans that cause disruption in habitats that they are not native to...causes  extinctions of natives 43. endangered species  small pop size k­selected species short life span w/disturbance large habitat needs specialist species w narrow niche biomag trophic position/thermoyns orgs dangerous to others fixed mig patterns/altered habitats behavioral patterns causing vulnerability sm,all endemic range island species 44. k selected species large size and long lived w low reprod rates 45. higher trophic positions are fewer in # bc E is lost as it goes up the chain 46. at least 1 species bc extinct daily biodiv disappearing fast 47. 75% 47 the international union for conservation of nature estimates ___ of extinctions of  birds(42%)/mammals(33%) since 1960 due to humans __ willife extinct from 1700­1970 om US, w/25 in last 50yrs 48. 1973 endangered species act endangered species­ in danger of extinctionin all/most of range ­illegal to sell/buy products made from ESs ­guidelines to ID species endangered(based on bio data) ­ can halt development of endangered species habitats 49. inadvertent introduction spread diseases, pests, predators, weeds fish, molluscs 50. intentional intros pets/economic benefit/pleasure...still bad  51. pests outcompete pests/exotic superior competitors to native species so can become__ and ___ natives 52. introduced pests dont bring predators w them..but bring parasites  53. endemic exotic/pest species have opp traits of __ species a lot of times 54. r­selected species repro'd mature at early age, many young that they provide no care for 55. species that adapt successfully to urban/suburban habitats r­selected habitat/diet generalistts nocturnal fed on purpose by humans bc cute no fear of humans nest in human built areas broad geographical distributions 56. logarithmic  few species account for almost all indivs form ____ distribution 57. lognormal curve octave bells shaped curve that plots # species vs x axis in log scale(classes of orgs..ex I:1 indiv II: 2­3  indiv...etc) popular log scale: __ scale(log2(1,2,4,8,16,32,etc) 58. frank w preston 1st to describe log distribution ­suggest few rare species and few common species in that comm ­most species have low/moderate pop sizes 59. accidental  __ species vwandered into community ­ goes locally extinct when they leave the habitat 60. deborah rabinowitz described general pattern of species abundance, w 7 ways to describe rare species and only 1 to  describe common species 61. causes of species rarity narrow habiat specificity/tolerance restricted geo range low local pop size 62. broad habitat sustainability, broad geo range, many large pops   63. common species house sparrow, dandelion 64. rare species w restricted geo range, but broad habitat tol and large local pop galapagos ground finches, montery pine 65. rare species w narrow hab tol  passenger pigeon and cottonwood 66. rare species w small local pop but broad range/tols tigers peregrine falcons 67. rare species w restricted range and narrow tol fish crow 68. rare species w restricted geo range and small pop tasmanian devils 69. rare species w narrow tol and small local pop size spotte owl and pacific yew tree 70. rare w small range, restricted tols, small pop size mountain gorilla, gian panda, california condor 71. larger scales show more species, but could get too big to where all the orgs of one species are in  one quad 72. point at which species­area curve bends gives info on relative sizes of forests that need to be  preserved to maintain high diversity .... SCALE imp 73. curve line on species graph shows more species in large areas straight line where slope=z: exonential 74. s=richness a=area c+z= constants S=CA^z 75. reasons most orgs have z of 0.2­0.35 avg z values: bc...   statistical: inc'd area= inc # rare species seen   bio: large heterogeneous hab has more niches 76. 10 (1/2) __ fold dec in island size cuts # observed species on island by __ 77. geometric model 1 species colonizes habitat and appropriates portion of resources next species takes half remaining resources next takes 50% remainder and so on gives straight line species usually has highest fitness and becomes most abundant ­habitats where 1 stressor controls envir and early succession comms 78. broken stick model (robert macarthur) ___ model by ___ resources divided randomly and ~equally among species simultaneously colonizing habiat (birds/fish) 79. lognormal model by preston model by ___ resources broken into parts based on # species using it resoruces break sequentially 80. species conservation sve wild species in nat habitat save wild species in managed habia preserve in zoos/parks save only genetic mats for resources and crops 81. conservation harvesting species wisely in a way that that sustains natural comms 82. preservation maintain nat pop size/habitats w/out using species as resource 83. european agency(interpol)\10­20 mil ___ estimates __$ annually in illegally traded wildlife goods  84. preserves area isolated from others in which species ecixts 85. landscape ecology study of spatial patterns and heterogeneity of patches on the landscape and how those spatial  patterns and spatial scale affect ecological processes occuring w/in local communities ­interdisciplinary 86. mosaics various­sized interacting patches of dif types and sizes of small habitats present 87. patches elements of mosaic of patches that compose or make up the landscape ­somewhat uniform ­differs in some ways from immediate surroundings 88. diversity of patche differ in boundaries, sizes, relative positions and shapes 89. patch dynamics changes in composition stx and fx of patches thru time in response to succession and distrurbance ­appear and disappear ­inc/dec in size ­change shape/connectivity ­change in composition/fx 90. corridors  relatively narrow strips of envir that connect similar patches across landscape similar in stx/composition to patches they connect allows species to persist longer than if isolated connect subpops to metapops porevent extinction by allowing dispersal btwn patches neg: can allow disease spread 91. network interconnected systems of corridors 92. connectivity spatial community of given habitat across landscape ­how connected by corriedors similar patches are ..can be high or low 93. matrix backgroup habitat/vegitation that covers the area ­dominant cover type of area, w/high connectivity ­some may not have definite matrix 94. boundary zone of the 2 edges of adj pathces ­defined or fuzzy(ecotone) ­probab;ly high species diversity, especially if many edge species present 95. disturbance how landscape reacts/responds to disturbance   96. scale grain, extent spatial/temporal dimension of the landscape ­___ fine/broad ­___(small to large, short time to long time) 97. ecolohical preserves large patches of land for preservation of species or entire comm 98. needs for ecological preserves large circular shapes of habitat connected habitats climate change effects important metapops corridors heterogeneity mosaic summer/winter needs 99. preserve size need to be large bc S dec exponentially w dec land size ­if smaller necessary, should be close together to allow colonization from others (gene flow &  recolonization allowed) 100. circular preserces minimize circumfrence and min introduced pest specis from edges ­ some need edges, some need core 101. habitat shape changes amount of edge/core frag could lead to whole habitat being edge  102. climate change effects  global warming causes change in suitable geographic range ­some ranges can change, species can warming will prevent future northern  migration 103. metapopulation one or more large islands w pops help preserve species ­___ stx allows for some ev processes to occur 104. landscape heterogeneity hinder or enhance disturbance spread ­if spreads in one cover type, should slow it if spreads on edge effects will spread through landscape 105. shifting mosaic steady state hypoth landscape is shifting mosaic of various patches created at diff times by diff processes in diff stages ever shifting but constant patch number in successional stages in the area due to constant  disturbance level that maxs species diversity in area 106. Consumer­resource intx Predation, parasitism, and grazing are called ___ 107. Symbiosis Intx btwn 2 species... Mutualism 108. competition intx btwn 2+ animals where a limiting resource causes red in reprod and survival for usually both  species 109. interspecific comp btwn species 110. intraspecific comp btwn orgs w/in species 111. scamble/ exploitative resource  scramble to consume resources that are in short supply 112. contest (interference) comp competitors aggressivly interefering w each others ability to obtain resources  113. georgy f. gause person who did experimental demonstration w paramecium to show concept of competitive  exclusion principle M 114. garrett hardin created concept of competitive exclusion principle 115. competitive exclusion principle no 2 species can coexist indef on limiting resource unless they use the resource a diff way... cant  have same niche in same habitat if diff species 116. thomas park showed competitve exclusion using grain beetles... changes condition (same species doesnt win  when envir changes sometimes) 117. niche fx role in comm 118. lotka­volterra competition eqs indep add competition coeffs to determine impact of interspecific comp 119. aN2=eqiv # N1 indivs BN2=equiv # N2 indivds (1/K1)­impact of each N1 indiv on N1 pop (1/K2)­ " " " N2 " "  (a/K1)= impact of each N2 indiv on N1 pop (B/K2)= " " " N1 " " N2 " (dN1/dt)=r1N1((k1­N1­aN2)/K1) 120. l­k eq 2 (dN2/dt)=r2N2((K2­N2­BN1)/K2) 121. 2 species can coexist if intraspecific comp is greater than interspecific comp 122. similar and near 1.0 if 2 species similar in resource use a & b are ___ 123. small numbers   (can coexist) if 2 species very dissimilar in resource use, a & B would be ___ 124. l­k assumptions no age/genetic stx no migration no time lags in response needed resources in limited supply a & b, K1 & K2 constant effect of density dependence is linear(adding causes linear dec in growth rates) only 2 species competing(could expand model to more) 125. possible outcmeso of l­k eqs species 1 wins out species 2 wins species coexist 1 w/bigger initial pop size wins 126. parallel above lower left lower right  species 1 wins over 2...  ­species 1 isocline ___ & completely ___ species 2's isocline ­is both (dN/dt) are __ values and in ___ corner so both species inc over time ­species 1 will cross 0 growth isocline for species 2, and species 2 will dec as species 1 inc  ­species 1 ends in __ __ of diagram where it is at carrying capacity (K1=N1) 127. parallel,above upper left (N2=K2) species 2 wins over 1... ­species 2 isocline ___ & completely ___ species 1's isocline ­species 2 will cross 0 growth isocline for species 2, and species 1 will dec as species 2 inc ­species 2 ends in __ __ of diagram where it is at carrying capacity (K1=N1) 128. intraspecific higher than inter"... isoclines cross, creating 4 areas on graph ­lower L­ both pop at low density(vector move up & right) ­upper R­ both pop at K(" " down & left) ­upper L/lower R­ both pops stable & pop smaller than K(vectors point towards intersectino of 2  isoclines 129. stable eq pt growth of 2 species at 1 time =0 130. greater strong interspecific comp a & b ___ than 1 whichever had highest density at 1st wins  unstable eq where lines cross 131. unstable eq pt where isoclines cross during interspecific comp 132. tilman said l­k model did not look at mech comp occured under looked at response of org to 2 resources  133. under if resource availability ___ isocline of species, species will decline " " " ___ " "" inc  134. isocline if resource availability along ___ line, resource availability runs along line and 0 pop growth occurs 135. essential resources  __ __ cannot be exchanged for subs ___ ___ excess of one resource can be sub'd for lack of another 136. richard root 137. guild group of orgs using same resource in habitat similarly similar modes of nutrient acquisition " motilities " habitat reqs compete some/cooperate some 138. relative __ abilities change w envir gradients 139. hutchinson defined fundamental niche & realized niche 140. fundamental niche entire niche reqs species could occupy 141. realized niche portion of niche actually occupied than org smaller than fundamental (from comp) 142. connell larva comp study of 2 barnacle species  ­Cthalamus­ intertidal zone as __ and in upper intertidal zone as adults ­balanus­ in lower intertidal zone ­connel transplanted C to lower tidal zone where B was removed and some where B still present ­B removes C if present bc less resistant 143. Ken Brown & Prof Alexander snails in stream channels ­both dec if both in same area ­lithasia lower dec growth rate when alone than helisoma 144. MacArthur niche partitioning studied feeding positions of 5 diff warbler species  use ___ so all get food & reduce comp 145. Darwin studied finches & ability to use diff sized prey  146. character displacement comp in areas of sympatry(overlap).. divergence in size, feeding ability, beak size, prey selection 147. Lack & Peter & Rose Grant studied character displacement 148. character release org in absence of comp expands org's fundamental niche and uses more prey of diff sizes or  changes niche  ­beak sizes become uniform  149. MacArthur diffuse comp combined effect of many species on one species  150. MacArthur direct interaction interference... aggression btwn 2 species 151. scramble(exploitation) comp  indirect intx thru ___, effect thru other species 152. Diane Davidson provided ex of diffuse comp.. removed largest ant species in 3 plots, intermediate size species inc in  # and smallest dec largest ant indirectly benefitted smallest 153. apparent comp Holt 2 competing species dont use same resource but are prey to same species  inc in 1 species may cause inc in predators and dec in other species described by __ 154. keystone predation Paine predator effects comp of several species by keeping comp among prey species low , so no comp  exclusion direct effect­ keep 1 prey species from driving another to extinction indirect­ when predator gone, other species lost through time by ___ 155. trophic cascade Robert Paine mechanism coined by __­ in which carnivores affect herbivores to keep #s low, so next trophic lvl  below herbivores benefit indirect effect­ inc/dec in 1 trophic lvl affects lowers 156. alternative hosts  povideaddtor lina resource for some parasites that would normally go extinct in a region ­could adversly affect native host even if 2 parasite species dont intx 157. predators any org that kills & eats another 158. grazers consume part of another org w/out killing it  159. parasite consume tissue of living host or steal digested food, harm not often kill 160. parasitoids hyperparasitism paralyzes prey & lays eggs on victim, larva eat victim ­predators  ­__ occurs when larva of one parrasitoid is paralyzed by larva of another 161. crypsis Predators blend into background of envir 162. aposematic/warning coloration used by poisonous animals to warn preadtors 163. batesian mimicry henry bates palpatable insects resemble distasteful insects that predators avoid ­usually nonpoisonous mimicing poisonus  ­more common ­usually diff phylogenic lines ­must be eaten after poisonious model is eaten ­does not outnumber models 164. mullerian mimicry toxic models.. ex) butterfly queen is toxic and resembles monarch ­poisonous and mimics ­same phylogenic line usually ­predator can eat mimic or model & learn to avoid ­occurs quicker ­does not depend on density of mimics being less than models 165. VC Wynne­edwards group selection summarized concept of ___... most pops purposefully reg consumption of resources & reprod to  ensure species survivorship 166. GC Williams individual selection said individuals acted only in their own  best interests ­takes adv of resources ­indiv die faster than group ­ groups cant predict availability of future resources ­could kill predators or offspring 167. altruistic acts acts of one that benefit another  168. index of relatedbess(r) Sewall Wright measure of % of 2 genes related infividuals share by ___ 169. gene centered (selfish) theory Richard Dawkins, Hamilton, Williams  evolution occurs thru differential survival  of competing alleles at given gene locus  successful: inc in allele freq by ___ , & __ & ___  170. kin selection indiv inc rep success of relatives, even if it costs them their survival (altruism) 171. hamiltons rule describes conditions  for which altrustic gene can spread by kin selection rB­C>0 B­#offspring gained by all recipients C­ # offspring lost by donor haldane liked it  172. lek gathering of males to attract females ­usually closely related 173. elton observed reprod cycles for pop #s ­oscillations btwn 2 species  ­predator pop size lags after prey size change  174. oscillations reduced by: ­alternative prey ­refugia ­density­dependent limitations on predator or prey ­crowding effects ­ inc efficiency in prey's ability to escape ­" " " predators " to capture prey 175. opunita­cactoblastis  exmalpe where opunita took over australia , so moth introduced & larva killed ...mosaic patterns left 176. Huffaker environmental complexity was enough for predator/prey pops to maintain themselves bc prey can  hide  177. Solomon functional response as prey inc in density, predators take more prey in linear basis 178. functional response curves type 1: linear inc in prey # per predator until cant eat more  type 2: predators become less & less efficient at taking prey as prey inc in # type 3: predator takes more of prey as it becomes more abundant...s shape... vertebrate predators 179. parasites ­more abundant than free living orgs ­ecto or endo ­­obligate or faculative ­complicated LC ­can reprod asexually ­clumped dispersion(few hosts)(few members in pop) ­at evolutionary dead end  180. obligate must finish LC on/in host 181. faculative can live w host or free living  182. microparasites bac/virus/protozoa ­multiply quickly ­short gen time  ­spread directly 183. macroparasites ­longer gen time ­spread indirectly or directly  ­can reinfect continuously 184. vectors spread parasite from host to host  ex)wind, water, org  185. intermediate host no sexual reprod ex) merozoites(from sporozoites) 186. definitive host parasite reprod sexually 187. ­sterility ­galls­morph response of plants to parasite ­immunity  ­behavioral changes ­mate selection(affects color & health) parasite effects on host 188. red queen hypoth/sexual selection coevol arms race btwn 2 species, or btwn males & females 189. social parasitism 1 species parasitically dependent on 2nd species due to 2nd species org or behavior 190. Kleptoparasitism forcible theft of prey from another org 191. Anderson & May deterministic model on ecological impact of parasitism  ­disease outbreak depends on lag effects, # infected, immune/susceptible hosts in pop 192. masting alll adult trees reprod huge # of seeds in 1 year ..some seeds survive bc so many 193. secondary compounds  chemical defenses ­can be stimulated/induced by herbivore 194. autotoxicity plants change toxic waste chemically & store in cells, indirectly helps defend them  195. if plant defense is adaptive.. ­induce defense when damages ­chem defense in parts eatable ­cant defend if under stress 196. mycorrhizae fungi and plant root mutualism 197. lcihens blue­green bac mutualism w fungi 198. mutualism vs. parasitism: ­no epidemics in mutualism ­parasites limit host's potential range ­ mutualism helps range ­felxible host specificity in mutualism ­specific hosts needed for parasites


Buy Material

Are you sure you want to buy this material for

75 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Bentley McCaw University of Florida

"I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"

Kyle Maynard Purdue

"When you're taking detailed notes and trying to help everyone else out in the class, it really helps you learn and understand the I made $280 on my first study guide!"

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."


"Their 'Elite Notetakers' are making over $1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.