New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Example Scientific Lab Report (Biology)

by: Pamela Crockett

Example Scientific Lab Report (Biology) Bio 151

Marketplace > University of North Dakota > Biology > Bio 151 > Example Scientific Lab Report Biology
Pamela Crockett
GPA 3.5

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

This formal write up consists of information acquired from a Biology experiment (Effects of Salt on Plant Growth). Original work (Received a 94%).
Introduction to Biology II
Diane Darland
75 ?




Popular in Introduction to Biology II

Popular in Biology

This 7 page Bundle was uploaded by Pamela Crockett on Tuesday May 10, 2016. The Bundle belongs to Bio 151 at University of North Dakota taught by Diane Darland in Winter 2016. Since its upload, it has received 73 views. For similar materials see Introduction to Biology II in Biology at University of North Dakota.


Reviews for Example Scientific Lab Report (Biology)


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 05/10/16
Pamela Crockett Matthew Berosik BIOL 151L – 07 March 30, 2016 Effects of Salt on Plant Growth: Measuring Impacts of Sodium Based on Plant Height and Seed Germination Abstract The idea that salt effects the germination of seeds, plant growth, and flower production  was tested using soil prepared with various concentrations of salt. Each aspect representing an  effect of salt was examined by counting the number of seeds planted versus the number of seeds  germinated, measuring the height of each plant, noting the number of leaves on each plant, and  documenting how many buds and flowers bloomed on each plant. The plants were placed on a  storage device for four weeks before results were documented. Seeds planted in soil containing a  higher concentration of salt showed a decreased number in germinated seeds, a stunt in growth  (height of plant in cm.), and minimal development of buds, flowers, and leaves. No growth or  germination was noted in the seeds that were planted in the soil that contained the highest  concentration of salt.  Introduction This lab explores how salt concentrations in soil affect seed germination, plant growth,  and flower production. (Carmichael, 2011) While all soil contains salts, which is an essential  nutrient for plant, a high level of salinity can be fatal. Salinity refers to an elevated amount of  sodium chloride in soil and water. (2005) In water, salt exists as ions, which are considered  helpful to plants during the growth process. (2007) However, a plant’s ability to properly absorb  water becomes inhibited as the soil surrounding it begins to dry out.  (Bernstein, 1975) As the  soil solution’s salt concentrations increases, the plant’s access to soil water becomes increasingly limited.  Salinity has more than one effect on plant growth due to the created osmotic effect.  (2007) Osmotic effect is also defined as osmotic potential, which is the potential of water  molecules to move from a hypotonic solution to a hypertonic solute ion across a semi­permeable  membrane. (2005) The primary purpose of this lab was to determine if a higher salt  concentration in soil would alter seed germination or plant maturation. Measurements of the  plant’s progress will be taken as followed: plant height (in cm.), number of seeds germinated,  number of flowers bloomed, number of buds present, and number of leaves grown. (Carmichael,  2011) Our lab group hypothesized that plants in soils containing higher salt concentrations would not display sufficient growth because the salt would inhibit water absorption, depriving the seeds of the nutrients necessary to grow to their full potential. Methods This exercise took place in the Biology Department at the University of North Dakota.  This experiment consisted of six participating groups, each contributing a different level of salt  concentration (two groups contributed two different salt concentrations) in the soil and each  providing a control to compare the end results to. The various salt concentrations were as  follows: 6%, 3%, 1.5%, 0.75%, 0.37%, 0.18%, 0.09%, and 0.045%. The first group prepared the  6% solution by adding 15 ml of salt to one cup of soil; the second group prepared a 3% solution  by combining one fourth cup of the previously mixed 6% soil with one fourth cup of plain soil;  groups three through eight prepared the remainder of the soil solutions by preparing one fourth  cup of the previous group’s soil mixture with one fourth cup of plain soil to ensure the salt  concentration of each new preparation was reduced by half. (Carmichael, 2011) Each group obtained 16 seeds of “Wisconsin Fast Plants”, or Brassica rapa, and planted  them in Styrofoam quads (each consisting of four cells). Each quad was labeled with a marker by each group with the section number of the lab, group number, and salt concentration of the  prepared soil. A wick was then added to two of the cells, extending out of the quad’s bottom, to  absorb excess water. Using the designated soil mixture, each cell was filled. Each group prepared two quads: one as a control to prepare the growth to, and one with a soil amended with salt.  There was no need to use fertilizer pellets, so a shallow depression was created on the top of  each cell where two seeds were dropped and covered with the appropriate soil. (Carmichael,  2011) A plastic dropper was then used to carefully water each cell, dispensing only enough  water to allow some water droplets to drip from the wick protruding from each cell. A  Rubbermaid container was then filled about two thirds full with water before placing one “anti­ algae” square per container. A felt mat was moistened and placed on top of the Rubbermaid  container lid. Using a planting scheme, each Styrofoam quad was placed on the watering mats in  accordance to the chart. Each plant was kept on a “growth cart” in order to be provided with  daily light. After four weeks had passed, the progress of each plant was evaluated based on  height, seeds germinated, flowers bloomed, and number of buds and leaves present. (Carmichael, 2011)  Results Overall, the results of this experiment were consistent with data found from prior  research done on this same topic. Our hypothesis that the plant growth would be inhibited by a  higher salt concentration was correct to a certain extent; higher salt concentrations (6% down to  1.5%) completely stunted plant growth and seed germination (earning a 0 in all categories),  while salt concentrations of .75% down to 0% displayed a wide variety of growth as follows:  height, in centimeters, ranged from 2.31 to 14.19; the average number of bloomed flowers  ranged from 4 to 13.5; the average number of buds ranged from 5 to 20; the average number of  leaves on each plant ranged from 6.43 to 8; and the average number of germinated seeds ranged  from 12.5% to 50%. A graph displaying these results can be found at the end of this report.  Discussion The hypothesis that a higher salt concentration in soil would inhibit water absorption in  the plant, causing its growth to be stunted, was only true in the highest salt concentrations. In  fact, several research articles explain how small amounts of salt are necessary to supply the  growing plant with ions and other nutrients it needs to grow to full potential. Sodium is typically  stored in the plant’s vacuole and can have various adverse effects that end up depriving the plant  of essential nutrients. (2005) Although crops are mostly salt­sensitive plants, there are some  plants, called halophytes, which manage to survive in high salt conditions. Due to the increasing  food demands of humans, plants can be genetically engineered to thrive as a salt­tolerant crop,  violating our original theory. (Bernstein, 1975) A similar study was performed in 2003 by not only measuring the effects of salt on  growth, but also ion accumulation, photosynthesis, and leaf anatomy. This experiment was  conducted by planting uniformly sized propagules in polyethylene bags that contained a mixture  of soil, sand, and leaf mold in a 1:1:1 ratio. The bags were then arranged in random blocks in a  greenhouse under a 12 hour photoperiod with photosynthetically active radiation and a controlled temperature. The seedlings were watered daily using normal tap water. It was found that there  was not only a decrease in plant growth, but also an accumulation of sodium and chloride in the  plant leaves followed by a reduction of calcium and magnesium uptake, causing increased  membrane permeability to salt. These findings are supportive of the hypothesis that plants are  unable to grow properly in high salt concentrations. (Parida, 2003) This type of experiment can also be used on other crops, such as corn. A study published  in the Brazilian Journal of Plant Physiology discusses the stomatal response and solute  accumulation among different maize genotypes. In order to study the effects of salt stress on the  crop growth, researchers started with seeds from eight different corn genotypes. Once the seeds  were germinated, some were moved to a nutrient solution (acting as a control), and others were  transplanted to a nutrient solution containing a high level of sodium chloride before being placed in a greenhouse. This study determined that plant growth showed a marked decrease in every  maize genotype but two, which happened to be the salt tolerant types. Salinity showed no effect  on the stomatal response of the salt tolerant genotypes, but it did affect the other six. This  experiment reinforces the findings that while salt can be fatal in high doses to growing plants, it  causes no alteration in salt tolerant plants. (2004) Conclusion The purpose of this lab activity was to measure the effects that salt solutions in soil have  on plant growth. It was determined that exceedingly high concentrations of salt adversely  affected plant growth and seed germination (0% percent in both categories), but showed no  inhibitions when used to grow plants in soil salt concentrations below 1%. We also learned that  plants grown without any salt in the prepared soil seemingly flourished just as well as those  grown in low salt concentrations. In conclusion, a plant’s growth will be destroyed if placed in  soil with high salt concentrations, however, it could help the seeds to thrive if grown in an  environment containing a minimal level of salt.  Literature Cited Bernstein, L. (1975). EFFECTS OF SALINITY AND SODICITY ON PLANT GROWTH.  Annual Review of Phytopathology, 13, 295­312.  J. B. (2004). Effects of salt stress on plant growth, stomatal response and solute accumulation of  different maize genotypes. Brazilian Journal of Plant Physiology, 16.­04202004000100005 Carmichael, J. (2011). Biology 151 Laboratory Manual. The McGraw­Hill Companies.  Learn about the effects of salt on plants. (2007, October 1). Retrieved March 30, 2016, from Management Guide Parida, A. K., Das, A. B., & Mittra, B. (2003). Effects of salt on growth, ion accumulation,  photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora. Springer Link,  18(2), 167­174. Salt of the Earth ­ How do plants cope? (2005). Retrieved March 30, 2016, from 


Buy Material

Are you sure you want to buy this material for

75 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Bentley McCaw University of Florida

"I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"

Amaris Trozzo George Washington University

"I made $350 in just two days after posting my first study guide."

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."


"Their 'Elite Notetakers' are making over $1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.