New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Geol 104 - full notes from entire course

by: Jacob Gambrell

Geol 104 - full notes from entire course Geol 104

Marketplace > University of Mississippi > Geology > Geol 104 > Geol 104 full notes from entire course
Jacob Gambrell

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

These are all of the notes I took for the class, covering all of the information.
Environmental Geology- Hazards
Dr. Cathy Grace
75 ?




Popular in Environmental Geology- Hazards

Popular in Geology

This 16 page Bundle was uploaded by Jacob Gambrell on Wednesday August 24, 2016. The Bundle belongs to Geol 104 at University of Mississippi taught by Dr. Cathy Grace in Spring 2016. Since its upload, it has received 8 views. For similar materials see Environmental Geology- Hazards in Geology at University of Mississippi.

Similar to Geol 104 at OleMiss


Reviews for Geol 104 - full notes from entire course


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 08/24/16
Geology 104, Dr. Grace Chapter 1 ­ Philosophy and Fundamental concepts Case History: Island of Hispaniola Good site for comparative study DR v Haiti Biophysical differences ­ Rainfall, topography, land use, land cover Socioeconomic  differences ­ history, population, economic activities  Reasons for degradation of Haiti's environment and subsequent inability to quickly rebuild after  the 2010 earthquake  Case history: Easter Island Small volcanic island with subtropical climate By 16th century, thriving society of 15­30,000 Europeans encountered in 17th century, only 2,000 people struggling in a degraded environment Reasons:  overpopulated  deforestation  soil erosions  loss of agricultural base  further conflicts and wars  geographic isolation geologic limitations  Earths place in space  Earth: Geospatially isolated in the universe Origin of the universe Origin of Earth system: Lithosphere, atmosphere, hydrosphere, and biosphere Facing limited resources: Energy, soil, freshwater, forests, ocean fisheries, rangelands Global environment: conflicts and integrated resolutions  Earth Environment (1) James Hutton (1785) ­ Earth as a superorganism  James Lovelock ­ Gaia Hypothesis  Earth is an organism  Life significantly affects earths environment  Life modifies the environment for the betterment of life Life deliberately or consciously controls the global environment  Interdisciplinary thinking  (2) Earth ­ dynamic, alive, complex  Everything alive ­ with a beginning and an  end    Earth environment as a total as a whole  Prolong Earths sustainable healthy life  Environment monitoring Environment problems­ mapping and analysis Environment problem prevention and protection  Environmental sciences Environment ­ complex system with physical, biological, geological, ecological, and  geopolitical aspects  Requires multidisciplinary research ­ environmental geology, environmental chemistry, global  climate change, biological diversity and ecosystems, environmental economics, environmental  ethics, environmental law Environmental crisis ­ population, environmental hazards, resource limitations and  contaminations, environment ownership (space and time  Environmental geology  Environmental geology ­ Applied geology Environmental geology knowledge  To better understand environmental problems  Geologic knowledge for problem solving Minimize environmental degradation Optimize the use of resources to maximize environmental benefits for the society  Environmental Geology (cont.)  Earth ­ Source for habitats and resources, waste disposal, environment, and health issues Better understand the natural hazards  Land and water resources ­ Use, planning, and management  Geologic aspect in every environmental condition Fundamental Concepts  Five fundamental concepts  Population growth Sustainability Systems and change hazardous Earth processes  Scientific knowledge and values  Other important concepts  Finite resources obligation to future   Human      Popula    Growth Number one environmental problem ­ Nearly 7 billion by the year 2010 (US 315,098,557 World  7,399,580,600 as of today)  Population Bomb? exponential growth  Exponential growth  Growth rate (G) ­ measured as a percentage  Doubling time (D) ­ D = 70/G Above earths comfortable carrying capacity ­ Use more resources, need more land space,  generate more waste  Earth as the only suitable habitat in the foreseeable future  Human pop growth (cont.) Uneven growing pace and distribution  By 2050, 3 billion more people  Almost all of the growth in developing countries  No easy answer to the population problems  Education is paramount, especially womans education.  As people become more educated, the  population growth rate tends to decrease Good news ­ the rate of population growth is decreasing  Sustainability  Sustainability ­ the environmental objective  An evolving concept Expectation and reality Criteria variation in space and over time  Is a long­term concept and has long­term implications  Requiring careful resources allocation, large scale development of new technology for resource  use, recycling, and wast disposal  Measuring sustainability  Use and consumption of non­renewable resources  Natural replenishment and renewable rates  Global consumption versus replenishment of resources  Development and improvement of human environment versus viable environment  Not lead to environmental crisis  Sustainability ­ The Death of Aral Sea  Once a properous vacation spot in 1960  Water diversion for agriculture Dying sea surrounded by salt flats  Largely irreversible Earths Systems and Changes  System condition ­ Open versus closed systems  System input­output analysis  System changes ­ Types of changes, rates of changes, scales of changes  Rates of change ­ Average residence time  ­T = S/F  T residence time  S total size of stock  F average rate of transfer  Earth: a dynamic system Four interconnected subsystems ­ Lithosphere, atmosphere, hydroshpere, and boisphere  Four subsutems are interconnected and interdependent  Present human actibity key to understanding the future  Predicting future changes  Uniformitarianism    The present is the key to the past The present is the key to the future  Changes of frequency and magnitude: Geological processes and human activities  Environmental unity ­ chain of actions and reactions  Earth systems  Gaia hypothesis ­ Earth is a living organism  Complext and interrelated subsystems  Global presepective on environment  Hazardouc Earth Processes Hazardous earth processes and risk statistics for past two decades  Annual loss of life ­ about 150,000 Finacial loss ­ > $20 billion Millions of life loss during past 20 years, particularly catastrophic from a major natural disaster  in a developing country (2003 Iran quake, ~30,000 people, 2004 tsunamis, ~300,000) More property damage occurs in a more developed country  Scientific knowledge and values  3­D environmental problems  changes of environment in 4­D  Expansiveness of geologic time  Broad spectrum of geologic processes  Solving Environmental problems  Difficult processes  Environmental problems tend to be complex  Rapid changes slow recognition, slower actions  Some changes are of irrerresponsible nature Environmental policy links to environmental economics in infancy  Precautionary Principle  Scientific certainty not required to take a precautionary approach  Scientific proof not possible in dealing with any environmental problems  Maybe difficult to apply  Lead to a proactive approach with an emphasis on environmental unity  Humans ­ Pleistocene era  Chapter 2 ­ Internal structure of Earth and Plate Tectonics Case History ­ Two major CA cities  San Andreas Fault ­ plate boundary b/w the North American and Pacific plates  Two major cities on opposite sides of the fault ­ LA and San Fransisco  Many major earthquakes related to the fault system Loss of many lives and billion in property damage  When will be the next 'big one' and what to do  "Strike­slip" fault  Internal Structure of Earth  Earths formation  Differentiation and interior concentric layers  Chemical composition model  Crust, Mantle, Core, Moho discontinuity  Physical property model  Lithosphere, ­ Crust, plate tectonics  Asthenosphere, ­ weak layer, like playdoh, allows for lithosphere to move  Mesosphere, ­ Middle area  Outer core, ­ liquid  Inner core ­ Solid, nickel, iron, radioactive particles  Study of Earths Interior Structure  Knowledge primarily through the study of seismology  Seismology ­ study of earthquakes and seismic waves  Examining the paths and speeds of seismic waves  Reflection on refraction  Two basic types of seismic waves  Body waves ­  P waves ­ primary waves     S waves ­ secondary waves    Surface waves  Seismic P wave  Primary of push­pull wave, travels like    sound wave Direction of rock particle vibration parallel to that of wave propagation Fastest rates or propagation, first arrival at seismograph  Body wave travels through earths interior and all media ­  solid and liquid    Seismic S wave Secondary of shear waves  The direction of particle vibration perpendicular of that propagation  Propagates slower than P waves Body wave, propagating through Earths interior, but not its liquid layers  Seismic waves and internal structures Earths interior boundaries ­  Sudden      changes     seis    waves  Different characteristics ­ different rates and paths of wave propagation  Asthenosphere ­ Low velocity zone, major source of Earths volcanism  Outer Core ­ No S wave through it  Internal Dynamics of earth   Evidence   Earths landscape  Dynamic phenomena­ earthquakes volcanoes  Hypothesis and theory  Continental drift  Sea floor spreading  Plate tectonics  Dynamic Earth ­ evidence Mountain belts ­ continental mountain ranges and oceanic ridges   Earthquakes    in space ­ concentrated zones Earthquakes over time Volcanism in space ­ concentrated zones  Volcanism over time Continental drift 1910 ­ Alfred Wegener proposed idea  Pangaea ­ all land, unified super­continent  Two parts of Pangaea ­ Laurasia (N) and Gondwana (S)  Pangaea drifting apart ~200 MYA  Same fossils across both sides of the Atlantic Ocean  Rock distribution and Paleozoic glaciations  Sea floor Spreading  Lack of mechanism for continental drift  1950s and early 60s ­ ocean expedition increased knowledge of oceanography  Harry Hess proposed sea floor spreading  Sea floor not a single static piece Existence of mid­oceanic ridges  Sea floor spreading along mid­oceanic ridges  Continents "float over" spreading sea floor  Paleomagnetic data  Dipolar magnetic field  Magnetic field recorded by iron­bearing igneous rocks  Striking symmetrical magnetic anomaly stripes  Age of sea floor rocks ­  Progressively    younger towards the mid­oceanic ridge   Thickness of sea floor sediments ­ progressively thinner towards the ridge  Plate tectonics  Unified theory ­ Study the dynamic creation, movement, and destruction processes of plates  Plates ­ lithosphere fragments  Plates move in relation to each other at varied rates  No major tectonic movements within plates  Dynamic actions concentrated along plate boundaries  Three types of plate boundaries  Convergent ­ plates moving apart and new lithosphere produced in mid­oceanic ridge Divergent ­ plates collide, subduction and mountain building  Transform ­ two plates slide past one another  Earths interior convection is mechanism for plate tectonics  Divergent plate boundaries  Plates move away from each other Mid­oceanic ridges Continental rift valleys  Creates new sea floors Extensional stress and shallow earthquakes Basaltic volcanism  Basaltic lava ­ soft and runny, flows easily   Convergent plate    boundary  C­C ­ major young mountain belts and shallow earthquakes  C­O ­ major volcanic mountain belts, subduction zone and oceanic trench, earthquakes  O­O ­ Subduction zone, deep oceanic trench, Volcanic island arc, wide earthquake zones  Hot Spots  Volcanic centers with magma source from deep mantle, perhaps near the core­mantle boundary  Chain of volcanoes over a stationary hot spot  Bend of a sea mount chain over a hot spot representing the change of plate motion Plate tectonics and environmental geology  Significance of tectonic cycle  Global zones of resources (oil, gas, and mineral ores) Global belts of earthwuakes and volcanic activities  impacts on the landscape and global climates  Geologic knowledge of plate tectonics­ foundation for urban development and hazard mitigation  Pangea broke up 180­200 mya  Curie forms  Lohiki ­ smallest newest Hawaiian volcano  Chapter 13 ­ Water Resources Global water cycle Cyclic nature Global movement of water between different water storage compartments Global distribution Abundance not a problem Distribution in space and over time a problem Supply vs. use a problem Waters vertical movement Upflow ­ Evaporation, transpiration  Downflow ­      Precipitation    and infiltration Waters horizontal movement Surface runoff Shallow subsurface flow Groundwater flow Surface water Surface runoff Drainage network Drainage basin or watershed Drainage divide Stream order and size of drainage basin Sediment yield in surface runoff Geological factors ­ Type and structure of soils and rocks Topographic factors ­ relief and slope gradient Climatic factors  ­ type, intensity, duration, and distribution of precipitation Vegetation factors ­ Type, size, and distribution Land­ use practice factors Ground water Ground water profile Vadose zone (unsaturated zone, zone of aeration) Zone of saturation Water table ­ The boundary of the above two zones Perched water table ­ local water table above a regional water table Aquifer ­ A unit capable of supplying water at an economically useful rate Aquitard or aquiclude ­ a confining layer or unit restricting and retarding GW flow Unconfined aquifer ­ no overlying confinging layer Confined aquifer ­ with an overlying aquitard layer Perched aquifer ­ local zone of saturation above a regional water table GW recharge and discharge Recharge zone ­ area where water inflitrates downward from surface to GW Discharge zone ­ Area where GW is removed from an aquifer, such as spring, well, river, etc Influent stream ­ above the water table, recharge water to GW may be intermittent Effluent stream ­ perennial stream with the addition of GW when the precipitation is low GW pressure surface ­ generally declining from source along the flow from recharge area to  discharge area Artesian Well ­ water self­rising aboce the land surface in a confined aquifer Cone of depression ­ drawdown cone of GW in a well Groundwater movement Hydraulic gradient ­ The gradient of water table, generally follows topographic gradient Hydraulic conductivity ­ ability of rock materials to allow water to move through  Porosity ­ percentage of void space in sediment or rock to store water  Permeability ­ measuring the interconnection of pores in a rock material  How fast the fluid can travel through rock  GW use and supply  Available GW estimated above total flow of the Miss during last 200 years  GWas primary drinking water source for ~50% of US population  GW overdraft problems  ­ extraction rate exceeds recharging rate ­ in many parts of country,  especially Great Plains region Estimated 5% of GW depleted but water level declined more than 50 ft in some areas  Now more than 300 ft  Interaction bw SW and GW  Overdraft of GW ­ leads to lower water levels of streams, lakes, reservoirs  Overuse of SW ­ yields lower discharge rates of GW  Special linkage area ­ sinkholes and cavern systems in the karst terrains  Water use  Offstream use ­ removal or diversion from its SW or GW sources temporarily ­ irrigation,  thermoelectric, industrial  Consumptive use ­ type of offstream use of water without intermediate return to the SW or GW,  such as transpiration and human use  Instream use ­ Navigation, fish and wildlife, recreation uses  Major urban areas  Overwithdrawal of groundwater ­ groundwater mining  Overuse of local surface water  Threats of local urban landfills o the water supply ­ Long island NY Water import issues and problems ­ What is distance to transport, how much is available, from  where, conflicts with other areas, litigations, and long­range planning Trends in water use  Data from 1950­1995 SW use far greater than GW use Rate of water use decreased and leveled off since 1980 Irrigation and thermoelectric are major consumptive use Water Conservation  Engineering technology and structure (canals) ­ regulation irrigation and reducing evaporation  Better tech in power plants and other industries ­ less use of water due to improved efficiency  Increased water reuse and recycling  Water Management  Need for  Increasing demand for water use (pop and economic development)  Water supply problems in semiarid and arid regions  Water supply problems in megacities of humid regions  Water traded as a commodity ­ capital, market, and regulations  Aspects to be considered ­ Leopold philosophy  Natural environmental factors ­ geologic, geographic, and climatic Human environmental factors ­ Economic, social and political  Strategies  More SW use in wet years, more GW use in dry years  Reuse and recycle water on regular basis as well as in emergencies  Management of the Colorado River  Managing the water  Water appropriation to 7 states in the US and to Mexico  Local needs vs. regional needs (Colorado River compact of 1922) Us vs. Mexico (treaty w/ Mexico in 1944)  Dam construction Impact on flood frequency Impact on sediment distribution, particularly downstream Impact on wildlife habitats  Controlled and planned floods  Water and ecosystem  Ecosystem ­ changes in response to climate, nutrient input, soils and hydrology  General tendency ­ increased human use of water, increased degradation of natural exosystmes  Overall reconciliation between multiple water uses Water resources development (dams, reservoirs, canals) and associated impact on surface water  environment  Reconciling the the uses of water ­ Agriculture, industry, urbanization, and recreation  Protection of wetlands and water resources  Emerging global water shortage  Isolated shortage of water ­ indication of a global pattern of water shortage  Depleted water resources ­ ober­drafted aquifers, dried lakes (aral sea) troulbed streams (CO and  Yellow river not reaching seas some years) Polluted limited water recources due to development and increased wastes  Demands for water recources tripled as population increases  Long Island ­ case study Salt water intrusion  ­ due to decline in water level  Urbanization triggered more serious water problems   Applied and Critical thinking Topics  Water pressure greater at a confined aquifer Ogalla aquifer ­ ground water mining  Comsumptive V noncomsumptive use  Chapter 14 – Water pollution  Common pollutants Oxygen demanding waste (common organic waste) - Dead organic matter decomposed by bacteria, an oxygen-demanding process BOD (Biochemical oxygen demand) - High BOD associated with a high level of decaying organic matter in water, reducing DO (dissolved O) for other healthy organisms Sources of oxygen-demanding waste - Natural processes, agricultural applications, urban sewage, and runof Pathogenic waste (pathogenic microbes) Fecal coliform bacteria Harmful risks (diseases and death) of E. coli Billions exposed to waterborne diseases, especially in poor countries Outbreaks do occur in developed countries Epidemic risks of waterborne diseases du ring natural disasters, such as earthquake, tsunami, flooding Nutrients Two important nutrients - Nitrogen, Phosphorus Major problems - cultural eutrophication - algae bloom, triggering BOD problem Major sources of nutrients - Fertilizer, feedlots, and discharge from wastewater treatment plants Areas of certain land use - agriculture and Urban Petroleum Major problems - polluted water, ecosystem damage, interrupted socioeconomic conditions of a community Major sources - oil spills from tankers and pipelines, on or ofshore oil production, war Toxic waste (chems, heavy metals, radioactive waste) Synthetic organic chemicals, up to 100,000 chemicals in use especially those POPs (Persistent Organic Pollutants) Heavy metals - Pb, Hg, Zn, Cd Radioactive materials Sediment Sand and smaller particles Polluted streams, lakes, reservoirs, even ocean water Major sources - soil erosion, dust storms, floods, and mudflows Greatest water pollutant by volume Thermal plumes Temp increases, less dissolved oxygen Adverse changes to the habitats of organisms Economic impacts Major sources - Hot-water discharge from industrial operations, power plants, abnormal ocean currents Surface Water pollution and Treatment Point sources of pollution Point sources are discrete, confined, and more readily identifiable Common sources - landfills discharge from wastewater treatment plants, discharge from industries, power plants, storm water runof Identify sources, on site treatment and mitigation, prevention Nonpoint sources of pollution Nonpoint sources are difused, intermittent, and hard to specifically identify Causes of nonpoint pollution often regional cumulative, and compound Influenced by land use, climate, hydrology, topography, and geology Common sources - urban runof, agricultural, mining (acid rain and acid drainage) GW pollution and treatment Why care about GW pollution? Most abundant freshwater source Growing dependency on GW ~50% of people in the US depend on GW for drinking water Triggers other environmental problems - water pollution, subsidence, saltwater intrusion GW pollution bs surface water pollution Residence time diference Environmental conditions - Inflow, flow rate, dissolved oxygen, sunlight Harder to track pollution sources More difficult and expensive to clean up May pose long-term risks Saltwater intrusion More than half the worlds pop lives in or near coastal zones GW pollution from saltwater Water table is inclined oceanward Wedge of saltwater is inclined landward Overpumping of GW Severe drawdown of GW causes saltwater ascension = Cone of Ascension GW Treatment Pretreatment studies Identify Contaminants and their characteristics of transport behavior Identify the Characteristics of aquifer geology Determine the hydrologic characteristics of polluted aquifers Extraction wells Vapor extraction Bioremediation permeable treatment bed Water quality standards MCLs - Maximum contaminant levels 83 contaminants MCLGs - Max contaminant level goals Max level at which no adverse health efects from a lifelong exposure SMCLs - Secondary max contaminant levels Nonenforceable limits for contaminants that afect aesthetic qualities in drinking water Water water treatment Law - Used wastewater must be treated Break the potential vicious cycle of wastewater entering the general water cycle Tier treatment and reuse system Septic system - rural residential areas Water treatment plant for towns and cities Innovative ways for recycling and reclaiming wastewater New technologies for innovative wastewater treatment Prinicipal cause of septic tank failure - bad soil Exxon Valdeez 1989 Hurricane in NC Chapter 15 ­ Mineral resources Mineral resources  Backbone of modern societies  Availability of mineral res as a measure of the wealth of a society  Important in peoples daily life as well in overall econ Processed materials from minerals account for 5% of US GDP  Min res are nonrenewable  Min res and reserves Min Res ­ usable economic commodity (profitable) extracted from naturally formed material  (elements, compounds, minerals, or rocks) Reserve ­ portion of a resource that is identified and currently available to be extracted legally  Defining factors ­ geologic, technological, economic, and legal factors  Types of mineral res Based on how we use them  Materials for metal production and tech  Construction materials  Ag industry ­ fertilizers  Mineral res for chem industry  Others (precious gemstone, cosmetics, food) Energy mineral res  Min Res problems  Nonrenewable res  Finite amount of min res and growing demands for the res Supply shortage due to growing global industrialization, with more developed countries  consuming disproportionate share of mineral res   The erratic distribution of the resources and uneve     consumpti     of the res.     Highly developed  countries use most of the resources Responses to limited availability  Find more sources Find a substitute Recycle  Use less and make more efficient use of what is available   Do without  Geology of Mineral Res Metallic ore ­ useful metallic min that can be mined for a profit Varies depending on Technology, economics, and politics, emphasis on profitability,  technological feasibility, and political demands Concentration factor ­ concentraion necessary for profitable mining Varies over time  Plate tect and min res Plate tectonic boundaries related to the origins of many ore deposits  Plate tectonic processes (high temp, high pressure, and partial melting) promoting release and  enrichment of metals along plate boundaries  Common metal ores along the boundaries are Fe, Au, Cu, and Hg  Min Res and Env impact Env impact  From mineral exploration and testing From mineral mining From mineral resources From mining waste disposal   The impact depends on many factors  Mining procedures Hydrologic conditions Climate factors  Types of rocks and soil   Topography Impact of Min Exploration and testing  Mineral exploration and testing  Surface mapping, geochemical, geophysical, and remote sensing data collection Test drilling  Impact  Generally minimal impact More planning and care needed for sensitive areas (arid, wetlands, and permafrost areas)  Impact of Min Extraction and processing  General impact  Direct impact on land, water, air, and biological environment Indirect impact on the environment ­ topographic effect, transportation of materials  Impact on social environment ­ increased demands for housing and services  Mining towns are boom and bust economy Impact from mining operations Land disturbances from access, surface mining  Waste from mines ­ 40% of the mining area for waste disposal, mining waste 40% of all solid  wastes Special mining eg Chem leaching from gold mining (Mercury and cyanide)  Mining         drainage ­ during mining and post­mining  Water pollution ­ such as smelting emissions of SO2 and cyanide heap leaching  Trace elements leaching out into water, such as Cd, Co, Cu, Pb, Mo, Zn Flooding of abandoned mines Acid mine drainage from tailings  Acidic and toxic mining wastewater Biological environment  Minimizing the impacting of mining  Knowledge and technology transfer ­ developed countries to developing countries  Env Regs ­ Forbid bad mining practices, Clean Air Act, and on­ and offsite treatment of wastes Land reclamation ­ about 50% of land used in mining industry reclaimed  Use of new biotechnology in mining ­ Bio­oxidation, bioleaching, biosorption, genetic  Recycling Min Res Why recycle? Consider the impact of the wastes  Toxic to humans Dangerous to natural ecosystems Degradation of air, water, and soil Use of Land for disposal  Aesthetically undesirable  Waste contains recyclable materials  Saves energy, money, land, raw mineral res from more mining Saves energy and money when recycling instead of refining raw ore materials Recycling has been proven to be profitable and workable  Most recycled metals ­ Iron and Steel, 90% by weight One­third as much energy needed to produce steel from recycled scrap as from original ore  More than $40 billion produced from recycled metals in 1998 Other recycled metals ­ Lead (63%), aluminum (38%), and copper (36%) Min and Sustainability  Sustainability ­ long term strategy for consuming the resources  Find an alternative materials for the metal, glass fiber cable for copper wires  Use raw materials more efficiently  More R&D on innovative substitutes  Evaporite through evaporation  Concentration factor ­ how much to make money Strip mining is cheaper than deep hole mining Smelters can cause acid rain 


Buy Material

Are you sure you want to buy this material for

75 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Bentley McCaw University of Florida

"I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"

Jennifer McGill UCSF Med School

"Selling my MCAT study guides and notes has been a great source of side revenue while I'm in school. Some months I'm making over $500! Plus, it makes me happy knowing that I'm helping future med students with their MCAT."

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."


"Their 'Elite Notetakers' are making over $1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.