New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Unit 1 Learning Objectives

by: Elizabeth Weathers

Unit 1 Learning Objectives BIO 277-01

Elizabeth Weathers

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

These notes cover all the learning objectives likely to show up on our first iRAT & tRAT
Human Physiology
Elizabeth S. Tomlin
75 ?




Popular in Human Physiology

Popular in Biology

This 7 page Bundle was uploaded by Elizabeth Weathers on Sunday August 28, 2016. The Bundle belongs to BIO 277-01 at University of North Carolina - Greensboro taught by Elizabeth S. Tomlin in Fall 2016. Since its upload, it has received 202 views. For similar materials see Human Physiology in Biology at University of North Carolina - Greensboro.


Reviews for Unit 1 Learning Objectives


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 08/28/16
Bio 277: Human Physiology 1. Define homeostasis. The body’s dynamic maintenance of optimal physical conditions, including plasma volume and osmolarity, blood gas composition, blood pressure, pH, glucose levels, etc. 2. Draw a simple homeostasis loop and explain the relationships between a controlled variable,  sensors, integrating center and effectors. Sensor (Receptor) – senses change in internal environment, reports findings to Integrating Center Integrating Center – usually the central nervous system; processes info sent from sensors & sends out  correct signals (instructions) to effector tissues of Effectors – tissues, cells or body systems that change their activity based on info received from Integrating Center to bring internal Controlled Variable back to normal range Controlled Variable – variable in the internal environment that was functioning outside normal range and needed to be adjusted 3. Describe the structure of a typical animal cell, and be able to describe the structure and function of all organelles, including the nucleus and the  plasma membrane. Plasma membrane: flexible barrier that holds cell’s shape, phospholipid bilayer with cholesterol molecules in between, proteins on the inside or outside surface and spanning the membrane  Nucleus: genomic DNA transcribed to mRNA in nucleus which is translated into proteins in cytosol,  contains nucleolus which synthesizes ribosomes  Mitochondria: site of most ATP synthesis (energy), contains enzymes of the Krebs cycle and electron  transport chain  Rough Endoplasmic reticulum (RER): ribosome­studded folded membrane where translation of mRNA to  make proteins occurs – these are proteins usually for export out of the cell – proteins made on free  ribosomes stay in the cell  Smooth Endoplasmic reticulum (SER): steroid hormone and lipid synthesis (anabolism) and break down  (catabolism), site of calcium storage – calcium release related to cell activity  Bio 277: Human Physiology Golgi apparatus: folded membranes that are the “finishing school” for proteins ( those for export out of the cell) 4. Describe the structure and function of the types of junctions that occur between cells. Leaky junctions – lots of traffic between cells eg. between hepatocytes (liver cells)  Tight junctions – very little traffic between cells ­ prevent leaks eg. skin cells, blood brain barrier, some  kidney cells  Adherens junctions – strength eg. myocardiocytes (heart cells)  Gap junctions – ion traffic windows – allow for the propagation of action potentials from one cell to the  next eg. heart cells, smooth muscle cell of intestines 5. Describe the structure and function of the major classes of macromolecules that make up living cells: carbohydrates, lipids, proteins and nucleic acids. Carbohydrates – store chemical energy in covalent bonds; building blocks are monosaccharides eg.  Glucose, disaccharides eg. Sucrose, polysaccharides eg. starch and glycogen (polymers of glucose for  storage) Lipids (fats) – non­polar/ hydrophobic– not soluble in water because no charge (polar molecules have  uneven distribution of electrons, and regions of partial positive and negative charge which allows them to  interact and dissolve in water); EX: triglycerides – glycerol + 3 fatty acids (long chains of carbon and H  molecules), steroids eg. estrogen, testosterone, cholesterol (important in membranes, precursor to  steroids), phospholipids (in phospholipid bilayer) amphipathic: polar phosphate head and non­polar fatty  acid tails  Nucleic acids – DNA, RNA (code for proteins)  made up of nucleotides: adenine, thymine, guanine,  cytosin and uracil; other important nucleotides are ATP, ADP, NAD, FAD (involved in energy transfer  reactions and cAMP, and intracellular signaling molecule) Proteins – amino acids joined by covalent bonds (peptide bonds); 3­D shape of proteins maintained  mainly ionic and hydrogen bonds, some covalent (affected by temp, pH and covalent modulators  [agonists or antagonists]); proteins act as enzymes, receptors and signals (ligands, which bind with  receptors) ; body maintains homeostasis with respect to all of these variables to maintain 3­D shape and  correct function of molecules; too much CO2 in blood makes it acidic, changes protein shape and function 6. Define an ion. Bio 277: Human Physiology charged atoms that have lost or gained an electron eg. Na+ has lost one and Cl has gained one ­  opposite ions are attracted to each other eg. NaCl 7. Explain the difference between hydrogen bonds, ionic bonds, covalent bonds and van der  Waals forces, and give examples of where these bonds occur. Covalent bonds– atoms share electrons – strongest type of bond – eg. carbon atoms in glucose, O2  Ionic bonds – ions are charged atoms that have lost or gained an electron eg. Na+ has lost one and Cl  has gained one ­ opposite ions are attracted to each other eg. NaCl  Hydrogen bonds – a weak attraction between a hydrogen atom and a nearby oxygen, nitrogen or fluorine  atom – eg. attraction between water molecules (note that the bonds within a water molecule are covalent) van der Waals forces – weak, non­specific interaction between the nucleus of one atom and the electrons of another – allows molecules to pack closely together eg. phospholipids molecules – bond is weak  because if the atoms get too close, their electrons repel each other 8. Explain how exchange of matter occurs between intracellular fluid, interstitial fluid and plasma. Intracellular fluid (cytosol) ­ inside the cells, 67% of water in body is intracellular fluid Interstitial fluid – fluid in the space between the cells (extracellular fluid), 25% of water in body Plasma – fluid in blood vessels (extracellular fluid), 8% of water in body  ­exchange of matter between fluids done by diffusion ­simple molecules like oxygen & CO2 use simple diffusion ­diffused through nearest fluid first    EX: oxygen going from lungs to cells will diffuse into plasma, then  interstitial fluid, then finally into intracellular fluid of cell 9. Define the central dogma of molecular biology, and explain how the sequence of nucleotides in  DNA codes for proteins. Central Dogma – transcription & translation Each 3­nucleotide sequence codes for a specific amino acid, & the sequence of these amino acids  determines the type & function of the protein Bio 277: Human Physiology 10. Describe the primary, secondary, tertiary and quaternary structure of proteins, and explain  what kinds of bonds are important in forming these structures. Primary Structure – sequence of amino acids joined by covalent bonds (peptide bonds) Secondary Structure – the 1  degree of folding (alpha­helix of beta­folded sheet), held together by  hydrogen bonds Tertiary Structure – determines shape of protein; 3­D shape maintained mainly by ionic & hydrogen  bonds, as well as van der walls forces, some covalent bonds between amino acid side groups  – affected by temp, pH and covalent modulators (agonists or antagonists) Quaternary Structure – created when more than 1 protein is linked together  ­EX: hemoglobin has 4 subunits, or 4 different proteins that make up its structure 11. Explain, using examples, how the 3­dimensional shape and charge distribution of a protein  determines its function. Shape: enzymes cannot bind with their substrates if they are an incorrect shape to fit next to their  substrate molecule 12. Use the Law of Mass Action to predict the direction of a reversible chemical reaction. Body will try to have even number of products & substrates for reversible chemical reactions 13. Explain the difference between anabolism and catabolism. Anabolism – creating & forming Catabolism – using & breaking down 14. Describe anabolic and catabolic reactions involving carbohydrates, lipids and proteins. Carbs ­anabolic: glucose to carbs ­catabolic: carbs to glucose Lipids ­ anabolic: fatty acids to fats ­ catabolic: fats to fatty acids Proteins Bio 277: Human Physiology ­ anabolic: amino acids to proteins­ catabolic: proteins to amino acids 15. Distinguish between oxidative and substrate phosphorylation with respect to the rate and  amount of ATP production. Oxidative – requires oxygen, produces ATP at a slow rate, produces 34­36 ATP/glucose molecule Substrate – does not require oxygen, produces ATP at a fast rate, produces 6 ATP/glucose molecule 16. Describe the role of glycolysis, the Krebs cycle, reduced coenzymes, the electron transport  chain and oxygen in the production of ATP. Glycolysis – uses 2 ATP, creates 4 ATP & 2 pyruvate; point of glycolosis to reduce 2 NADH Transition – 2 pyruvate made into 2 acetyl CoA, 1 NADH, 1 CO2 Krebs cycle ­ NAD⁺ reduced to NADH, FADH reduced to FADH₂, makes a little ATP, makes CO₂ Reduced Coenzymes – NADH & FADH₂ donate high­energy electrons (H⁺) for ETC ETC ­ H⁺ concentration gradient made to be source of potential energy, H⁺ passes through ATP  synthase to make lots of ATP, combined with oxygen to make water byproduct 17. Explain what simple diffusion, facilitated diffusion, and osmosis have in common, and how  they differ. Simple Diffusion no proteins required Use concentrati Osmosis on gradient Facilitated Diffusion requires protein, uses proteins only for water Bio 277: Human Physiology 18. Draw a graph of rate of diffusion across a membrane as function of solute concentration for  both simple and facilitated diffusion. Chart Title 7 6 5 Time 4 Facilitated diffusion Simple diffusion 3 2 1 0 Molecule/Element diffusion 19. Define saturation of a transporter and be able to label this on a graph. An important characteristic of all carrier­mediated transport mechanisms is that they can become  saturated (just like an enzyme!). At the point of saturation all of the available transporters are occupied at  this [substrate], so this is the fastest possible transport­rate. 20. Define active transport and describe the difference between primary and secondary active  transport. Primary – directly uses ATP Secondary – uses ion gradient 21. Be able to draw the normal concentration gradients across a cell membrane for potassium,  sodium, calcium and protein. K⁺ This cartoon shows Proteins the normal Proteins Ca⁺⁺ gradients for ions K⁺ O₂ between the ICF and ISF. Active transport NA⁺ NA⁺ Ca⁺⁺ O₂ maintains ionic gradients across 22. Describe the structure of an ion channel and the different gating mechanisms. Bio 277: Human Physiology Ion Channel – pore­forming membrane protein whose function includes establishing a resting membrane  potential, shaping action potentials and other electrical signals by gating the flow of ions across the cell  membrane, controlling the flow of ions across secretory and epithelial cells, and regulating cell volume. Channels may be open all the time or can be “gated”. Hormones, local signals and neurotransmitters can  bind with the “gate” and open or close it. The gating of ion channels ion regulates movement across  membranes of excitable cells (neurons, etc.). 23. Define transcytosis and give at least two examples of where this occurs. Transcytosis – large scale movement of molecules by combination of endocytosis, vesicular transport, &  exocytosis EX: antibodies absorbed on the apical surface of infant’s intestinal epithelium Plasma proteins carried across capillary endothelium


Buy Material

Are you sure you want to buy this material for

75 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Kyle Maynard Purdue

"When you're taking detailed notes and trying to help everyone else out in the class, it really helps you learn and understand the I made $280 on my first study guide!"

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."


"Their 'Elite Notetakers' are making over $1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.