New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Chemistry Chapters 6, 7, and 8

by: Devin Mart

Chemistry Chapters 6, 7, and 8 CHM 160 001

Marketplace > Missouri State University > Chemistry > CHM 160 001 > Chemistry Chapters 6 7 and 8
Devin Mart
GPA 3.82

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

Thermochemistry, The Quantum Mechanical Model of the Atom, and Periodic Properties of the Elements
General Chemistry 1
Dr. Richter
Chemistry 160 - General Chemistry
75 ?




Popular in General Chemistry 1

Popular in Chemistry

This 9 page Bundle was uploaded by Devin Mart on Tuesday March 29, 2016. The Bundle belongs to CHM 160 001 at Missouri State University taught by Dr. Richter in Spring 2016. Since its upload, it has received 9 views. For similar materials see General Chemistry 1 in Chemistry at Missouri State University.


Reviews for Chemistry Chapters 6, 7, and 8


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 03/29/16
Chapter 6: Thermochemistry    ● Thermochemistry is the study of the relationships between matter and energy.  ○ Energy​  is the capacity to do work.  ■ Heat is the source of much of the work done on our planet.  ● Heat is energy in transit.  ■ Temperature is not the same as heat.  ○ Energy may be classified as either ​Kinetic​ orPotential Energy​.  ■ Kinetic (KE) ­ energy due to motion.  ■ Potential (IE) ­ energy due to position.  ■ When a ball is released, the potential energy is transformed into kinetic  energy.  ○ Thermal Energy​  ­ the energy associated with the temperature of an object (a form  of kinetic energy).  ○ Energy cannot be created or destroyed, only rearranged.  ● Kinetic Theory​  states that atoms, molecules and ions are in constant, random motion.  ● The most common energy unit is the Joule.  ○ Calories © are another common energy unit.  ■ One calorie is equal to 4.184 J.  ○ “Calories” © are used to measure the energy content of food.  ■ The energy is released when the food is metabolized.  ● Energy units measure the amount of energy given off, or taken in, during a chemical  reaction.  ○ Energy changes that occur during a chemical reaction are due to the making and  breaking of chemical bonds.  ● Fossil fuels are sunshine in the Gas, Liquid and Solid form.  ○ One of the main reactions responsible for metabolism in humans produces energy.  ○ When wood is burned cellulose, a polymer of sugar, is consumed.  ○ When plants (and animals) die and are exposed to air, water and other organisms  they decompose.  ■ Over millions of years, plants that captured the rays of our young sun were  transformed into coal and petroleum.  ○ Petroleum is pumped to the surface from its natural, underground reservoirs and  can then be transported via pipelines to its place of use.  ■ Petroleum also produces more energy than a comparable amount of coal.  ○ Petroleum is an incredibly complex mixture and gasoline is only one part of it.  ■ Distillation towers are used to process petroleum and separate out the  different chemicals.  ■ Over 87% of each barrel of petroleum is used for transportation and  heating.  ○ Octane (C₈ H₁ ₆), the main component of gasoline, is the most useful form of  petroleum and is used to fuel vehicles.  ■ If more energy is produced than is consumed during a chemical reaction, it  can be used for other purposes.  ● Thermodynamics​  ­ energy transfers and conversions in chemical reactions.  ○ The First Law of Thermodynamics​ states that the total energy of the universe is  constant.  ■ In other words, the energy has to come from someplace we cannot simply  create it.  ■ When chemical bonds are formed, energy is released.  ■ When chemical bonds are broken, energy is consumed.  ● Chemists often divide the universe into a system and its surroundings.  ○ Heat energy will transfer from the hotter to the colder region until they reach the  same temperature.  ■ Molecules in the surroundings slow down (cool off), while molecules in  the system speed up (heat up).  ○ Heat, when it enters a system, produces an increase in the average motion with  which the particles of the system move.  ■ Total energy before and after the process is the same (energy is  conserved!).  ○ If the system loses energy, the surroundings gain energy and vice versa.  ■ ΔEsys = ­ΔEsurr  ○ If energy is gained by a system = + sign.  ○ If energy is lost by a system = ­ sign.  ■ Fuels produce a ­ΔEsys.  ■ CH₃ CH₂ OH + 3O₂  → 2CO₂  + 3H₂ O + 1275 kJ given off →  ΔEsys = ­1275 kJ/mol  ● Enthalpy is the heat exchanged between the system and surroundings.  ○ The energy change in the system equals the change in energy of the gas plus the  energy change of the piston.  ■ ΔEtotal = ΔEsys + ΔEsurr = 0  ΔEsys = ΔEgas + ΔEpiston  ΔEgas = q (the sum of heat transferred)  ● Brick heats gas → the pressure increases → the piston moves.  ○ The change in energy of the piston is equal to the work done to or by the system.  ■ ΔEpiston = mgΔh = work = w  m = mass  g = acceleration due to gravity  Δh = height piston has been raised.  ○ The change in energy of the system is the sum of the heat transferred and the  work done to or by the system.  ● Bomb calorimeters can be used to determine reaction enthalpy.  ○ 2Na + Cl₂  → 2NaCl  ΔE = ­411  ● Atmospheric pressure acts like a piston.  ● Enthalpy is the heat exchanged with with the surroundings under constant pressure.  ○ Enthalpy change values indicate the amount of energy consumed or produced in  chemical reactions.  ■ CH₄  + 2O₂ → CO₂  + 2HO ΔHrxn = ­802 kJ/mol   ■ 2C₂ H₆ + 7O₂ → 4CO₂  + 6H₂O ΔHrxn = ­1560 kJ/mol  ○ Sum of bond energies of formation greater than the sum of the bond energies  broken.  ● Exothermic reactions have a negative ΔH (the vessel becomes hot).  ○ 2H₂  + O → 2H₂ O ΔH = ­438.64 kJ/mol  ● Endothermic reactions have a positive ΔH (the vessel becomes cold).  ○ 2H₂ O → 2H₂  + O₂ ΔH = 438.64 kJ/mol  ● ΔHrxn and Molrxn represent the balanced chemical equation as a whole unit.  ○ If the amount of reactants is doubled, the enthalpy is doubled.  ■ 2H₂  + O₂ → 2H₂O ΔH = ­438.64 kJ/mol  ■ 4H₂  + 2O₂ → 4H₂O ΔH = ­877.28 kJ/mol  ○ ΔHrxn depends on the reaction.  ● Standard state enthalpies (ΔH°) are measured at 1 atm and 25°C.  ○ Enthalpy is a state function, meaning it depends only on the initial and final states,  not the path used to get there.  ● Reactions produce or consume the same amount of energy.  ○ Decomposition  ■ CH₄  → C + 2H₂ ΔH° = 74.6 kJ/mol  ○ Formation  ■ C + 2H₂  → CH₄ ΔH° = ­74.6 kJ/mol    Chapter 7: The Quantum Mechanical Model of the Atom    ● Quantum mechanics​ is a model that explains where electrons exist in atoms and how the  electrons determine the chemical and physical properties of elements and compounds.  ○ Electromagnetic radiation has been used to determine how the electrons are  distributed in atoms.  ○ Light is electromagnetic radiation, a type of energy with oscillating electric and  magnetic fields.  ■ Electromagnetic radiation​  can be described as a wave composed of  oscillating electric and magnetic fields. The fields oscillate in  perpendicular planes.  ● A wave is a continuously repeating change or oscillation in matter or a physical field.  ○ Visible light, X­rays and radio waves are all forms of electromagnetic radiation.  ■ Waves can be described by ​ wavelength​ , amplitude​ and frequency​.  ● The amplitude of a wave is the vertical height of a crest (or depth  of a trough).  ● The wavelength is the distance between any adjacent identical  points on a wave.  ○ When light passes through a prism, it splits into its different wavelengths.  ■ Frequency is the number of wavelengths of a wave that pass a fixed point  in one unit of time (usually a second).  ● Frequency and wavelength are inversely related (lower frequency  = longer wavelength).  ■ The greater the wavelength, the smaller the frequency for waves traveling  the same speed.  ● λ × v = speed of wave  ● The range of frequencies or wavelengths of electromagnetic radiation stretch from  gamma to radio waves.  ○ R O Y G B I V  ○ Humanity uses or interacts with most forms of electromagnetic radiation daily.  ● Waves, including electromagnetic waves, interact with each other in a characteristic way  called interference ​ ○ If waves align with overlapping crests when they interact with one another a wave  with twice the amplitude results called constructive interference​.  ○ If waves align so that the crest from one source overlaps the trough from the other  source the waves cancel called ​destructive interference.  ● When light encounters an obstacle that is comparable in size to its wavelength, it bends  around it or diffracts.  ○ When a wave passes through a small opening, it spreads out. Particles, by  contrast, do not diffract; they simply pass through the opening.  ● When light passes through two slits, constructive and destructive interference are  observed.  ○ Light displays both particle­like and wave­like properties.  ○ The ​ photoelectric effect was the observation that many metals emit electrons  when light shines on them.  ● Max Planck found that the color emitted (given off) from a hot solid indicated the  temperature of the solid.  ○ Only certain energies of light were allowed.  ○ E = ɳ hv n = 1, 2, 3, …  ■ h is Planck’s constant → 6.63 × 10⁻ ³⁴  ■ ɳ  are quantum numbers.  ■ The energy, E, is said to be quantized (limited to certain values).  ● Einstein postulated in 1905 that light exists as quanta (called photons), or particles of  electromagnetic energy, with E proportional to the observed frequency of light.  ○ Electrons are ejected only if the energy of the light (hv) is higher than a certain  value (characteristic of the material).  ○ Einstein postulated that an electron is ejected when struck by a single photon  (packet of light energy).  ■ This photon must have enough energy to remove the electron from  attractive forces within the metal.  ■ E = hv & hc/λ  ■ In essence, the photon is absorbed by the electron and gains energy.  ○ Einstein’s equation, E = hv, can be used to calculate the energy, wavelength and  frequency of light.  ■ E = hv & c = λv  ● Light interacting with atoms in results in the movement of electrons.  ○ Passing electricity through hydrogen gas results in the emission of light.  ● Bohr used the work of Planck, Einstein and others to formulate a model of electron  distribution.  ○ Bohr assumed that the negatively charged electron and the positively charged  proton were held together by attractive forces.  ■ The attractive forces cannot be strong enough so that the electron joins the  nucleus  ○ Postulate 1 says that an electron can only have specific energies.  ○ Postulate 2 says that an electron can only change energy by going from one  energy level to another.  ■ Transitions between energy levels occurs when the electrons gain or lose  energy.  ● Energy emitted (hv) = E initial ­ E final  ■ Since electrons move between levels this indicates that there is more than  one ‘shell’ or energy level around the nucleus.  ■ The four lines in the hydrogen spectrum are four different transitions  between energy levels or shells.  ● The theory of quantum mechanics applies to particles of matter such as electrons as well  as chemical molecules.  ○ Particles such as electrons have wave­like properties.  ● You cannot simultaneously observe both the wave nature and the particle nature of the  electron.  ○ The introduction of a tool to observe the electrons as they pass through the two  slits changes how they interact with one another.  ○ Complementary properties​  are properties that exclude each other.  ● The more accurately you know the position of the electron, the less accurately you know  its velocity and vice versa.  ● When dealing with subatomic particles, we must think terms of probabilities.  ● Schrodinger’s formulation of the way electrons interacted with the nucleus allows us to  calculate the energies and orbitals where the electrons reside.  ○ Quantum numbers describe the orbitals in which electrons can be found.  ■ The principal quantum number (n = 1, 2, 3, …) determines the overall size  and energy of an orbital.  ■ The angular momentum quantum number (l) determines the shape of an  orbital and can be any number between 0 and n­1.  ■ The magnetic quantum number (m₁ ) determines the orientation of an  orbital and can be any integer between ­1 and +1.  ○ To summarize, only certain combinations of quantum numbers are allowed.  ■ The three quantum numbers (n, l, and m₁ ) are all integers.  ■ The principle of quantum number cannot be zero. (n = 1, 2, 3, …)  ■ The angular momentum quantum number can be any number between 0  and n­1.  ■ The magnetic quantum number can be any integer between ­1 and +1.  ● Atomic spectroscopy involves the movement of electrons among orbitals.  ● The shapes of orbitals are important because chemical bonds depend on the sharing or  movement of electrons between atoms.  ○ Bonding is the movement or sharing of electrons between orbitals.  ○ The shape of the orbital is determined by the angular momentum quantum  number.  ■ ɫ  = 0  s  ■ ɫ  = 1 p  ■ ɫ  = 2 d  ■ ɫ  = 3 f  ○ Orbitals are probability distributions.  ● To get a better idea of where an electron is most likely to be found, we use a radial  distribution function.  ○ Each principal level with n = 2 or higher has three p­orbitals (m₁  = ­1, 0, +1).  ○ Each principal level with n = 3 or higher has five d­orbitals (m₁  = ­2, ­1, 0, +1,  +2).  ○ Each principal level with n = 4 or higher has seven f­orbitals (m₁  = ­3, ­2, ­1, 0,  +1, +2, +3).  ● We do not ‘lose’ orbitals as we add others. We simply have more orbitals with a larger  value of n.  ● Atoms are drawn as spherical since all the orbitals together make up a roughly spherical  shape.    Chapter 8: Periodic Properties of the Elements    ● Mendeleev organized the elements based on periodic law: when elements are arranged in  order of increasing mass, their properties recur periodically.  ○ Mendeleev’s ordering allows predictions to be made.  ● Bohr postulated that electrons exist in orbitals (or shells) around the nucleus.  ○ Electrons can only change energy by going from one energy level to another.  ■ Ionization completely removes an electron from an atom.  ○ The closer the electron is to the nucleus, the harder it is to remove the electron.  ■ The nucleus is positively charged so the closer an electron is to the  nucleus, the stronger it is attracted by the atom.  ● The first ionization energy is the minimum energy required to completely remove an  electron from a ground state atom in the gas phase.  ○ Ionization energy increases across the table and decreases as you go down the  table.  ● The outermost electrons are known as the valence electrons  ● Photoelectron spectroscopy (PES) uses photons to knock electrons out of atoms from  both valence and innermost shells.  ● Shells contain subshells.  ○ An s­subshell can hold 2­electrons; a p­subshell can hold 6­electrons.  ● There are four subshells that we will focus on; s, p, d and f.  ○ Ionization energies and subshells correlate with positions on the periodic table.  ● An electron configuration for an atom shows the particular subshells that are occupied for  that atom.  ○ This is a predictable relationship between the periodic table and electron  configuration.  ○ Outer shell (or valence) electrons are often the only ones shown, but inner shell  (or core) electrons are still present.  ● Schrodinger’s formulation of the way electrons interacted with the nucleus led to the  same results derived from photoelectron spectroscopy.  ● Quantum numbers describe the orbitals in which electrons can be found.  ○ n = principal quantum number (size of the orbital)  ○ l = angular momentum quantum number (shape of the orbital)  ○ ml = magnetic quantum number (orientation in space)  ● The spin of the electrons within atoms creates a magnetic field that interacts with the  external magnetic field.  ○ Hydrogen atoms are paramagnetic and interact with the magnetic field.  ○ Helium atoms are diamagnetic and do not interact with the magnetic field.  ● An orbital is a region of space where only electrons of opposite spin can reside.  ● The Pauli Exclusion principle states that electrons in an orbital must have opposite spin.  ● Hund’s rule states that every orbital in a subshell is singly occupied with one electron  before any one orbital is doubly occupied, and all electrons in singly occupied orbitals  have the same spin.  ○ Experimental evidence from magnetic studies indicate that the electrons fill in  degenerate orbitals one at a time with parallel spins, then start to pair up.  ● As you move down a column, the number of electrons in the outermost principle energy  level remains the same.  ○ The valence electrons are those in the outermost principle energy level.  ○ If d or f shells are full, these do not count as valence electrons.  ○ Elements that have the same number of valence electrons have similar properties.  ● The chemical properties of the elements are largely determined by the number of valence  electrons they contain.  ● Combining a metal and a non­metal produces a ‘salt’.  ● Elements with a full valence shell are not reactive.  ● The size of an atom or ion influences many of the chemical and physical properties of the  atom or ion.  ○ The radius is equal to one­half the distance between nuclei of adjacent atoms in a  solid.  ■ Atoms become larger as we go down a column in the periodic table.  ■ Atoms become smaller as we go from left to right across a row in the  periodic table.  ○ Core electrons shield outer electrons from the full force of the nucleus, while  electrons in the valence shell do not shield each other.  ○ The number of protons in the nucleus increases as we go across a row, so the core  charge increases and the force of attraction between the nucleus and electrons also  increase.  ● The electron configuration for an ion is determined by adding or removing electrons from  the electron configuration of the neutral atom.  ○ Cations are much smaller than their corresponding atoms.  ○ Anions are much larger than their corresponding atoms.  ● Ionization energies also help explain why elements on the left side of the table are more  likely than those on the right to form cations.  ● Electron Affinity is a measure of how easily an atom will accept an addition electron.  ○ EAs “tend to” become more positive as we move down as column, and are more  negative as we move across a row.  ● Metallic character decreases from left to right, and decreases from bottom to top in the  periodic table.                          ίħ(▯/▯t)ψ(r,t) = ­(ħ²/2m)Δ²ψ(r,t) + V(r,t)ψ(r,t)    With i being the imaginary number, √­1 and h being Planck’s constant divided by 2π: 1.05459  ×10⁻ ³⁴ and ψ(r,t) acting a wave function defined over space and time. Determine the potential  energy influencing the particle and the probability of the electron’s location in a region of time  and space.         


Buy Material

Are you sure you want to buy this material for

75 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Jennifer McGill UCSF Med School

"Selling my MCAT study guides and notes has been a great source of side revenue while I'm in school. Some months I'm making over $500! Plus, it makes me happy knowing that I'm helping future med students with their MCAT."

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Parker Thompson 500 Startups

"It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.