New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Study Guide for Final Exam

by: Lani Dalbacka

Study Guide for Final Exam BIOC 4331

Marketplace > University of Minnesota > Biochemistry > BIOC 4331 > Study Guide for Final Exam
Lani Dalbacka
U of M
GPA 3.83

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

Sorry this took so long. Here is my detailed study guide for the final exam and includes some key questions from past quizzes and exams!
Biochemistry I: Structure, Catalysis, and Metabolism in Biological Systems
Yue Chen
Study Guide
50 ?




Popular in Biochemistry I: Structure, Catalysis, and Metabolism in Biological Systems

Popular in Biochemistry

This 5 page Study Guide was uploaded by Lani Dalbacka on Tuesday December 22, 2015. The Study Guide belongs to BIOC 4331 at University of Minnesota taught by Yue Chen in Summer 2015. Since its upload, it has received 41 views. For similar materials see Biochemistry I: Structure, Catalysis, and Metabolism in Biological Systems in Biochemistry at University of Minnesota.


Reviews for Study Guide for Final Exam


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 12/22/15
Study Guide for BIOC 4331 Final Exam  Non­covalent interactions   Different types of non­covalent interactions   Electronegativity and hydrogen bonds ( what is required to make a hydrogen bond?)  Acids and bases  Definition of pH   Definition of acid dissociation constant (pKa)   Relationship between pKa and pH (General Rule of Thumb: proportions of ionized or un­ionized molecules)  Amino acids and peptides   Chemical structure of L­amino acids   Know and be able to draw the structures of amino acid side chains, and chemical characteristics (acids, bases, hydrophobic  etc.)   Know the one and three letter codes   Know the chemical structure of the peptide bond   Acid and base characteristics of amino acid side chains: which side chains generally act as acids or bases and their  ionization state given their pKa value at a specific solution pH value   Be able to draw and recognize a graph of pH vs. % protonated or % unprotonated Protein primary structure   Definition of protein primary structure   Steps involved in determining primary structure   SDS­PAGE and proteins: how it works   Basic concepts of protein evolution (hypervariable, invariant, conservative amino acids)  Protein secondary structure   Characteristics of ­helices (how many amino acids per turn?)  Definition and characteristics of amphipathic helices   Characteristics of  –sheets (how many amino acids per turn? Which is more favorable: antiparallel or parallel? Why?)  Characteristics of ­turns Protein tertiary structure (which amino acids are found in beta­turns?)  Definition of a motif and domain   Difference between convergent and divergent evolution   Types of membrane proteins: integral, peripheral, transmembrane   Amphipathic helices as membrane proteins   Characteristics of protein glycosylation  Protein quaternary structure   Naming conventions (monomer, dimer, homo­ vs hetero­ etc.)   Differences between globular and fibrous proteins; examples of fibrous proteins  Thermodynamics and Equilibrium   First and second laws of thermodynamics   Free energy, enthalpy (exothermic vs. endothermic) and entropy and equations relating these variables   G and spontaneity of reactions; exergonic versus endergonic   Additive G values for reactions sharing common intermediates   Relationship between free energy change (ΔG) and concentration   Definition of ΔG’ (a constant!)   Calculating the actual G and its relationship to ΔG’   Relationship between K’eq and ΔG’ protein folding   Concepts of protein folding; chaperones and what they do   Cofactors/coenzymes   NAD/FAD coenzymes and redox   Basics of redox equations; carbon oxidation   Know equation relating G and E   Know the Nernst equation and how to use it protein purification   Know the fundamentals of the different purification methods discussed (isoelectric focusing, ion exchange  chromatography, gel filtration/size exclusion, affinity chromatography)   Methods for detecting proteins and peptides Hemoglobin and allostery   Concepts to know: allostery, cooperative binding of hemoglobin, sigmoidal binding curve for Hb vs. hyperbolic curve for  Mb, Bohr effect, BPG Protein binding   Ka and Kd   Know how to interpret the plots for non­cooperative ligand binding multiple sites of a protein   How to interpret a Hill plot; the Hill coefficient nH  Enzyme kinetics  Know Michaelis­Menten equation   Know how Vmax is defined and its relationship to Kcat and Et   Define Kcat   Know what the Km is and what it measures   Know how to draw a plot of [S] versus V0 when given appropriate information   Know how to interpret a double­reciprocal plot of a Michaelis­Menten enzyme Enzyme inhibition   Know how to draw a plot of [S] versus V0 for uninhibited or inhibited enzyme when given appropriate information   Know how to recognize double reciprocal plots for different types of inhibitors covered in class and how to read these plots  Study table summarizing affects of different inhibitors (slide 19, p. 163 in Griffin course packet)  ­know interactions between Vmax, Km, and inhibitor for each plot (competitive, pure noncompetitive, mixed  noncompetitive)  Know what the  and ’ term is Bisubstrate reactions   Know how to recognize and name multisubstrate reactions (Bi bi etc., sequential vs. ping pong)   Know how to interpret/draw shorthand enzyme diagrams for sequential (ordered/random), ping pong reactions   Know how to recognize from double reciprocal plots for bi bi sequential vs. ping pong reactions  Enzymatic catalytic mechanisms   Know the different mechanisms discussed (general acid/base, metal catalyzed etc.) and how to recognize these for a given  mechanism   Know how to recognize the specific enzymes and their mechanisms discussed in class: carbonic anhydrase, enolase,  chymotrypsin (serine proteases), lysozyme , HIV protease  ­know which mechanisms exhibit ping pong or sequential reactions  Know types of protein regulation and details underlying each of these (6 different types of regulation but focus on allosteric regulation, protein degradation via ubiquitination, zymogen activation, and covalent modification via phosphorylation)   Know the concepts of phosphoryl group transfers (e.g. glutamine synthetase) and the thermodynamics of these reactions Carbohydrates   Recognize the sugars glyceraldehyde, ribose, glucose, galactose, fructose, glycerol, 2­ deoxy ribofuranose, glucosamine,  amylose, amylopectin, glycogen and cellulose.   Know what epimers and anomers are and how to tell alpha vs. beta.   Know the ring closure reactions for glucose and fructose.   Understand alpha and beta linkages in polysaccharides including amylose, amylopectin, glycogen, cellulose, and chitin.   Know the storage and structural polysaccharides: examples, structure, significance, H­bonding.  Glycolysis   Be able to recognize all structures, know the names of all enzymes and cofactors, and which steps involve energy and  carbon gain or loss.   Know the importance of phosphorylating glucose and how key enzymes are regulated.   Know how NAD+ is regenerated under anaerobic conditions in both yeast and humans   Draw fructose and galactose entry into glycolysis.  TCA cycle   Know all structures, names of all enzymes and cofactors, and which steps involve energy and carbon gain or loss.   Know how pyruvate dehydrogenase works.   Understand the three conceptual phases.   Know which steps involve oxidative decarboxylation Electron transport and oxidative phosphorylation  Know the functions of the complexes, electron carriers, how compounds enter, how molecules move, understand the  reaction.   Be able to draw e­ transport and oxidative phosphorylation at the ‘blob’ level.   Understand standard reduction potential and the significance of the proton gradient.   Know the process of ATP synthesis by ATP synthase.   Be able to describe iron­sulfur centers and cytochrome proteins.  Gluconeogenesis and Glycogen synthesis   Be able to recognize all structures, know the names of all enzymes and cofactors, and which steps involve energy.   Know the steps that differ between glycolysis and gluconeogenesis, and understand why some enzymes are used for both  pathways and some are not (which step involves oxidative decarboxylation?)  Understand energy charge and reciprocal regulation.   Know how glycolysis, gluconeogenesis, glycogen synthesis and glycogen breakdown are regulated by the metabolic state  of the cell and by hormones.   Understand insulin, glucagon, and protein kinase A. Metabolic Regulation  Be able to describe the coordinated control and reciprocal regulation of glycolysis and gluconeogenesis, the regulatory  role of fructose 2,6­bisphosphate.  ­How is Fructose­2,6­bisphosphate regulated by glucagon? How does glucagon affect its phosphorylation states? Case Studies and Metabolic Diseases  Review the case studies and be able to describe a disease caused by loss of a metabolic enzyme or vitamins.  Lipids   Know the basic types, structural and chemical properties of lipids  Know how to name fatty acids ­standard vs. PUFA omega  Know the properties of fatty acids including trans fat, the properties of triacylglycerides, the properties of phospholipids  and lipid bilayer.   Be able to explain fluid mosaic model of membrane and identify the types of lipids and their derivatives as signaling  molecules.   Explain the mechanism of Aspirin and why it could reduce risks for heart disease.  Lipids catabolism  Understand the lipid digestion and uptake process.   Know the lipolysis process in adipose cell and its hormone­dependent regulation.   Know the process of fatty acid activation into fatty acyl­CoA, where and why it happens, and the enzymatic process.   Understand the carnitine shuttle system.   Understand each step in beta­oxidation including the compound structure, enzyme names and co­factors.   Know the properties and composition of ketone bodies.   Understand the general process of ketone bodies generation, when and why they are generated.  Lipids biosynthesis   Understand the general properties of lipid biosynthesis.   Know the properties, regulation and function of acetyl CoA carboxylase and the reaction catalyzed by acetyl CoA  carboxylase.   Clearly understand the enzymatic processes of fatty acid synthesis including the compound structure, enzyme names and  co­factors.   Know the processes of producing NADPH and acetyl CoA for lipid biosynthesis. Know the regulation of lipid  biosynthesis pathway.  Cholesterol  Know the facts about cholesterol and the four stages of cholesterol synthesis.   Understand the steps in the synthesis of mevalonate in comparison to the ketone bodies synthesis pathways.   Know the rate­limiting step in cholesterol biosynthesis and the principle of statin drug.   Know the properties and functions of four lipoprotein particles.   Understand the role of LDL receptor and the link between LDL and atherosclerosis.   Know the differences between HDL, LDL, and VLDL  Amino acid metabolism  Know the basic facts about nitrogen metabolism and amino acid oxidation.   Understand the general process of amino acids uptake in digestive system.   Know the transamination reaction – enzymes, substrates, key cofactor and cellular function.   Know the functional roles of glutamate, glutamine and alanine in amino group metabolism, including the general process  and the enzymes involved.   Know the enzymatic process of the synthesis of carbamoyl phosphate.   Clearly understand the urea cycle – compounds involved, where each reaction occurs and if energy is consumed.   Understand the connection between the urea cycle and TCA cycle.   Understand glucogenic/ketogenic amino acids and the ones exclusively ketogenic.  Diabetes  Know the symptoms of different types of diabetes (mellitus vs. insipidus) and be able to explain these symptoms.   Clearly understand the roles of hormone (insulin, glucagon and epinephrine) during Fed and Fasted/diabetic states – their  regulation of blood glucose, glycolysis/gluconeogenesis, glycogen and lipid metabolism.   Know the mechanism of insulin stimulation of glucose uptake and the mechanism of insulin secretion from pancreatic  beta cells in response to high glucose.   Know the acute and chronic diabetes conditions.   Understand protein glycation in diabetes and Hemoglobin A1c test.  Photosynthesis   Know the basic facts of photosynthesis and the properties of chlorophyll.   Clearly understand the light reaction process, both cyclic and non­cyclic oxidative phosphorylation. ­What is generated in each and what is not?  Know the similarities and differences between non­cyclic light reaction and mitochondria electron transport chain  (Complex I, III, IV).   Understand the basic concepts about dark reactions (Calvin cycle) and what each step is similar to.   Know the three phases of Calvin cycle and their similarities/differences with the three phases of TCA cycle.   Know the enzyme in the first step of Calvin cycle and the general process of regenerating ribulose­1,5­ bisphosphate –  how carbons are shuffled from 6C and 3C compounds to generate 5C compounds Cancer metabolism   Know the Warburg hypothesis – its definition and comparison between cancer and normal cells.   Know the principles of FDG­PET scanning.   Understand how Warburg effect is advantageous and the cause of altered metabolism.   Understand the role of mitochondria in Warburg effect.


Buy Material

Are you sure you want to buy this material for

50 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Kyle Maynard Purdue

"When you're taking detailed notes and trying to help everyone else out in the class, it really helps you learn and understand the I made $280 on my first study guide!"

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."


"Their 'Elite Notetakers' are making over $1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.