×

### Let's log you in.

or

Don't have a StudySoup account? Create one here!

×

or

## Physics 2080 Exam 1 Study Guide

by: Amanda Biddlecome

203

3

8

# Physics 2080 Exam 1 Study Guide Physics 2080

Marketplace > Clemson University > Physics 2 > Physics 2080 > Physics 2080 Exam 1 Study Guide
Amanda Biddlecome
Clemson
GPA 4.0

Get a free preview of these Notes, just enter your email below.

×
Unlock Preview

This study guide includes important equations, main topics, important values and charts, and suggested practice problems from the textbook. This material comes from Chapters 16, 17, and 18.
COURSE
General Physics 2
PROF.
Dr. Pope
TYPE
Study Guide
PAGES
8
WORDS
CONCEPTS
Physics
KARMA
50 ?

## Popular in Physics 2

This 8 page Study Guide was uploaded by Amanda Biddlecome on Friday January 22, 2016. The Study Guide belongs to Physics 2080 at Clemson University taught by Dr. Pope in Fall 2016. Since its upload, it has received 203 views. For similar materials see General Physics 2 in Physics 2 at Clemson University.

×

## Reviews for Physics 2080 Exam 1 Study Guide

×

×

### What is Karma?

#### You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 01/22/16
Physics  2080   Exam  1  Study  Guide   Chapters  16-­‐18   Exam  Date:  1-­‐28-­‐2016   Amanda  Biddlecome     Equations     1)  How  to  find  temperature  in  Fahrenheit:      F =(9/5)T +32°   c                 *T =FFhrenheit  Temperature   *T =Cclsius  Temperature     2)  How  to  find  temperature  in  Celsius:    C =(T -­‐3F)(5/9)     *T =CClsius  Temperature   *T =Fahrenheit  Temperature F     3)  How  to  find  temperature  in  Kelvin:      K =T +27C.15       *T =KKlvin  Temperature   *T =Celsius  Temperature     4)  Thermal  Expansion  (Linear)   *ΔT  is  the  same  for  Kelvin  and  Celsius   *α  can  be  represented  as  either  Kelvin  or  Celsius  and  varies  by  material      ΔL=αLΔT     *ΔL=change  in  length     -­‐1   *α=coefficients  of  linear  expansion  (Celsius  degrees)     *L=length     *ΔT=change  in  temperature     5)  Thermal  Expansion  (Volume)   *ΔT  is  the  same  for  Kelvin  and  Celsius   *β  varies  by  material     ΔV=βVΔT     *ΔV=change  in  volume                  *β=coefficient  of  volume  expansion=3α  (Celsius) -­‐1   *V=volume     *ΔT=change  in  temperature     6)  Rate  of  conduction  of  heat  across  a  temperature  difference     *ΔT  is  the  same  in  Kelvin  and  Celsius   *k  varies  by  material       Q/Δt=(kA/L)ΔT     *Q=heat:  J(smC)        *Δt=change  in  time  (s)                   *k=thermal  conductivity  of  the  material  (W/(m-­‐K))     *A=cross-­‐sectional  area  (m)   *ΔT=change  in  temperature  (K)         7)  The  amount  of  energy  radiated  by  an  object   *emissivity  is  a  number  between  0-­‐1  and  is  unit-­‐less     P=eσT A   4   *P=energy  radiated  (W)   *e=emissivity             *σ=Stefan-­‐Boltzmann  constant=5.67X10  Wm K   -­‐8 -­‐2-­‐4   *T=temperature  (K)   *A=surface  area  (m)     8)  Ideal  Gas  Law  when  given  the  number  of  moles     *Be  careful  with  the  units  in  these  values,  especially  pressure   PV=nRT     *P=pressure  (atm  or  kPa  or  Pa)   *V=volume   *n=number  of  moles         *R=universal  gas  constant=8.31  J(molK)  *T=temperature  (K)     9)  Ideal  Gas  Law  when  given  the  number  of  molecules   *Be  careful  of  the  units  in  these  values,  especially  pressure   PV=Nk T   B   *P=pressure  (atm  or  kPa  or  Pa)     *V=volume     *N=number  of  molecules       *k =Boltzmann’s  constant=1.38X10 JK  *T=temperature  (K)   -­‐1     10)  rms  speed   v rms =√[(v +v +…1v )/n]2   n2   *v =rms  speed     *n=number  of  moles   rms   11)  Average  velocity      v=(v 1v +…+2 )/n   n   *v=average  speed     *n=number  of  moles     12)  Average  Kinetic  Energy   2  avg =(1/2)mv rms     *K =avgragen  kinetic  energy     *m=mass     *v rms =rms  speed     13)  Average  Kinetic  Energy     K avg =(3/2)kT     *K =avgrage  kinetic  energy     *k=Boltzman’s  constant=1.38X10 J/K     -­‐23   *T=temperature  (K)     14)  rms  speed   *this  is  a  combination  of  the  two  Average  Kinetic  Energy  equations   rms =√[(3kT)/m]     *v rms =rms  speed     *k=Boltzman’s  constant=1.38X10 J/K     *T=temperature  (K)     *m=mass             15)  Internal  Energy      U=(3/2)NkT=(3/2)nRT     *U=internal  energy  (J)     *N=number  of  molecules         *k=Boltzman’s  constant=1.38X10 J/K     *T=temperature  (K)         *n=number  of  moles    *R=universal  gas  constant=8.31J/(molK)       16)  The  amount  of  heat  required  to  raise  a  mass’s  temperature   *Be  sure  the  units  in  the  specific  heat  match  the  units  of  mass     *ΔT  is  the  same  in  Kelvin  and  Celsius   Q=mcΔT     *Q=heat     *m=mass     *c=specific  heat  c(J/kgK)     *ΔT=change  in  temperature     17)  The  amount  of  heat  required  to  change  a  mass’s  phase    Q=mL     *Q=heat     *m=mass                   *L=latent  heat  (fusion,  vaporization,  or  sublimination)  (Jkg )   -­‐1   18)  Change  in  internal  energy     ΔU=U -­‐U f i   *ΔU=change  in  internal  energy  (J)   *U =final  internal  energy f (J)       *U=initial  internal  energy  (J)         19)  Change  in  internal  energy   *The  signs  in  this  problem  are  very  important  and  can  be  tricky,  so  read  the  problem  well     ΔU=Q-­‐W     ΔU=change  in  internal  energy  (J)     *Q=heat  (J)     *W=work  (J)     20)  Work  done  by  an  expanding  gas  at  constant  pressure   *When  you  have  a  constant  volume,  the  work  will  be  0   W=PΔV     *W=work  (J)    *P=pressure     *V=volume       21)  Work  found  by  interpreting  a  PV  Diagram     W=NkTln(V /V )=nRTln(V /V )   f i f i   *W=work     *N=number  of  molecules     *k=Boltzman’s  Constant     *T=temperature     *ln=natural  log     *V =ffnal  volume     *V=iniiial  volume     *n=number  of  moles        *R=universal  gas  constant       22)  Heat  released  at  a  constant  volume    Qv=nC ΔT  v   *Q =hvat  at  a  constant  volume     *n=number  of  moles                 *C =svecific  heat  at  a  constant  volume     *ΔT=change  in  temperature           23)  Specific  Heat  at  a  constant  volume     vC =(3/2)R     *C =vpecific  heat  at  a  constant  volume     *R=universal  gas  constant     24)  Heat  released  at  a  constant  pressure   Q =pC ΔT p   *Q =peat  at  a  constant  pressure   *n=number  of  moles         *C =specific  heat  at  a  constant  pressure     *ΔT=change  in  temperature   p   25)  Specific  Heat  at  a  constant  pressure   C p(5/2)R       *C =ppecific  heat  at  a  constant  pressure     *R=universal  gas  constant     26)  Work  done  by  a  heat  engine   W=Q -­‐Q h   c   *W=work     *Q =heat  released  at  hot  temperature             *Q =ceat  released  at  low  temperature       27)  Efficiency  of  a  heat  engine   e=1-­‐(Q /Q )c   h   *e=efficiency    *Q =heac  released  at  cold  temperature           *Q =heat  released  at  hot  temperature       28)  Heat  and  temperature  relation   *the  temperatures  T  and  T  are  ALWAYS  in  Kelvin     c h (Q /c )=(Th/T )   c   h   *Q =ceat  released  at  cold  temperature               *Q =heat  released  at  hot  temperature     *T =cold  temperature       *T =hot  temperature     29)  Efficiency  of  a  Carnot  engine   e carnot =1-­‐(T /Tc)  h   *e carnot =efficiency  of  a  Carnot  engine     *T =cold  temperature       *T =hot  temperature       30)  Maximum  work  a  heat  engine  can  do   W max =[1-­‐(T /T cQ ] h  h   *W max =maximum  work     *T =cold  temperature     *T =hot  temperature     *Q =heat  released  at  hot  temperature       Main  Ideas   -­‐Thermodynamics   -­‐Temperature     *heat,  thermal  contact,  thermal  equilibrium,  Zeroth  Law  of  Thermodynamics,     Fahrenheit  to  Celsius  to  Kelvin  conversions,  how  pressure  and  temperature     are   related,  absolute  zero       -­‐Thermal  Expansion     *calculations,  Volume  Thermal  Expansion  and  Linear  Thermal  Expansion   -­‐Heat     *calories,  spontaneous  heat  flow,  units,  internal  energy,  conduction,     convection,   radiation   -­‐Thermodynamic  Processes     *ideal  gas,  pv  diagrams,  isovolumic  process,  isobaric  process,  Boyle’s  Law,     adiabatic  process   -­‐Ideal  Gas  Law     *different  equations  for  moles  and  molecules   -­‐Units  of  measurement   -­‐Kinetic  Theory     *what  it  relates,  how  molecules  act  in  a  container,  pressure,  different  types  of     speed  and  how  to  calculate  them,  kinetic  energy,  potential  energy,  internal     energy     -­‐Heat     *specific  heats,  latent  heat,  phase  change  diagrams,  how  to  find  total  heat,     difference  in  heat  used  to  change  the  temperature  and  heat  used  to  change     the   phase   -­‐Zeroth  Law  of  Thermodynamics     *what  it  is   -­‐First  Law  of  Thermodynamics     *equations,  constant  volume,  how  internal  energy  and  temperature  relate,     quasi-­‐ static  systems,  reversible  systems,  idealized  reversible  processes,     constant  pressure   and  changing  volume  in  relation  to  work,  free  expansion,     adiabatic  processes  and   how  they  relate  to  the  first  law     -­‐Specific  Heats     *how  to  find  them  at  constant  volume  and  constant  pressure   -­‐Second  Law  of  Thermodynamics     *spontaneous  heat  flow,  heat  engines,  work  related  to  heat  engines,     efficiency   related  to  heat  engines,  temperature  related  to  efficiency  and  work,     heat  engines  that   work  backwards,  heat  pumps   -­‐Third  Law  of  Thermodynamics     *Absolute  Zero       Common  Diagrams  and  Values   -­‐Absolute  Zero=0  Kelvin   -­‐Freezing  point  of  water=32°F,  0°C,  273  K   -­‐Boiling  point  of  water=212°F,  100°C,  373  K   -­‐Specific  Heat  of  water  (c)=4.186  J/gram°C   -­‐Stefan-­‐Boltzmann  constant  (σ)=5.67X10 Wm K -­‐8 -­‐2 -­‐4   -­‐1 -­‐Universal  Gas  Constant  (R)=8.31  J(molK)   -­‐Botzmann’s  Constant  (k )=1.38X10 JK b -­‐23 -­‐1   -­‐Room  Temperature=20°C,  68°F,  283  K   -­‐Gamma  (γ)=5/3   -­‐Specific  Heat  at  Constant  Pressure  (C )=(5/2)R   p -­‐Specific  Heat  at  Constant  Volume  (C )=(3/2)R   v   -­‐Isovolumetric  Process         -­‐Isobaric  Process       -­‐Isothermal  Process  (Boyle’s  Law)  and  Adiabatic  Process       -­‐Phase  Change  Diagram             -­‐Heat  Engine  Diagram                 Helpful  Book  Problems   Chapter  16:   -­‐PG  565,  Conceptual  Questions:        *1,  2,  8,  10,  11,  12,  15,  16   -­‐PG  566-­‐569,  Problems  and  Conceptual  Exercises:        *1-­‐8,  12-­‐14,  17-­‐22,  24,  25,  33-­‐39,  41-­‐43,  46,  49-­‐52,  54-­‐56,  59     Chapter  17:     -­‐PG  603,  Conceptual  questions:      *1,  2,  4,  5,  7,  10   -­‐PG  603-­‐607,  Problems  and  Conceptual  Exercises:      *1-­‐2,  4-­‐5,  7-­‐13,  15-­‐16,  19-­‐20,  26-­‐28,  30-­‐31,  46,  56-­‐60,  65,  67-­‐73     Chapter  18:     -­‐PG  643,  Conceptual  Questions:        *4-­‐7,  9-­‐11,  13,  15   -­‐PG  643-­‐647,  Problems  and  Conceptual  Exercises:        *1-­‐5,  8-­‐10,  12-­‐15,  17-­‐26,  30,  34-­‐36,  40,  43-­‐45,  50-­‐51,  53-­‐54,  56-­‐58,  61-­‐62

×

×

### BOOM! Enjoy Your Free Notes!

×

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

## Why people love StudySoup

Steve Martinelli UC Los Angeles

#### "There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Jennifer McGill UCSF Med School

#### "Selling my MCAT study guides and notes has been a great source of side revenue while I'm in school. Some months I'm making over \$500! Plus, it makes me happy knowing that I'm helping future med students with their MCAT."

Steve Martinelli UC Los Angeles

Forbes

#### "Their 'Elite Notetakers' are making over \$1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!
×

### Refund Policy

#### STUDYSOUP CANCELLATION POLICY

All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email support@studysoup.com

#### STUDYSOUP REFUND POLICY

StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here: support@studysoup.com

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to support@studysoup.com