New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Intro to Physical Geography Study Guide for Lectures 1-8

by: ashcash

Intro to Physical Geography Study Guide for Lectures 1-8 GEOG 1111

Marketplace > University of Georgia > Geography > GEOG 1111 > Intro to Physical Geography Study Guide for Lectures 1 8

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

This study guide covers material on everything from the atmosphere to mechanisms of heat transfer. It contains the first 8 of 10 lectures that will be covered on test 1, as well as key vocabulary c...
Intro to Physical Geography
Study Guide
50 ?




Popular in Intro to Physical Geography

Popular in Geography

This 11 page Study Guide was uploaded by ashcash on Sunday January 31, 2016. The Study Guide belongs to GEOG 1111 at University of Georgia taught by Hopkins in Fall 2015. Since its upload, it has received 41 views. For similar materials see Intro to Physical Geography in Geography at University of Georgia.

Similar to GEOG 1111 at UGA

Popular in Geography


Reviews for Intro to Physical Geography Study Guide for Lectures 1-8


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 01/31/16
GEOG 1111 Exam #1 Review (The following list IS NOT all INCLUSIVE.)  1) Lecture 1: Intro. to Geography  &  Earth's Spheres   basic terms & definitions: the 5 basic themes and the 3 main sub­disciplines o Location: the spatial component of geography (2 kinds: Absolute and  Relative)  Absolute: Latitude and longitude, GPS coordinates  Relative: Comparing one location to another using the distance  between them (can be measured in time, miles, or kilometers) o Place: The characteristics that make a location unique.  i.e. Egypt has pyramids (Giza/Cairo) o Movement: Diffusion of organisms and physical events across the Earth’s  surface. o Regions: The study of areas with uniform or similar cultural and/or  physical characteristics. o Human­Earth Relationships: Impact of the environment on people and  people’s impact on the environment. o Physical Geography: Non­man­made patterns o Human/Cultural Geography: Human­made patterns o Techniques: Tools of geography   physical geographers: o Eratosthenes:   One of the first geographers  Measured the polar circumference of the Earth  Was a cartographer (mapmaker)  Developed the idea of environmental zones (based on temperature) o Alexander von Humboldt:  Father of modern physical geography  Brought scientific  study to physical geography o Vladimir Koeppen:  Developed the Koeppen Classification System for identifying  climates based on vegetation, temperature, and precipitation  patterns. o Alfred Wegner:   Developed the Theory of Continental Drift o Charles Thornthwaite:  Developed a climate classification system based on water balance,  precipitation, and potential evapotranspiration o Tetsuya Theodore Fujita:  Developed the Fujita scale to measure the intensity of tornadoes. o Robert Simpson:  Developed the Saffir­Simpson Scale to measure hurricane intensity (with the help of Herbert Saffir).  4 spheres(atmosphere, biosphere, lithosphere, hydrosphere) o Atmosphere: Thin gaseous veil which surrounds the Earth. o Hydrosphere: All the water above, on, and in the Earth. o Lithosphere: The Earth’s crust. o Biosphere: The living organisms of the planet and the interconnections  between them and their physical environment.  2) Lecture 2: Latitude & Longitude   Lines of latitude vs Lines of longitude o Latitude Lines: Lines that run east­west, but are measured north­south,  starting at 0 degrees (the Equator), and ending at 90 degrees North and 90  degrees South (the North and South Poles). o Longitude Lines: Lines that run north­south, but are measured east­west,  starting at 0 degrees (Prime Meridian) and ending at 180 degrees (the  International Date Line)  Major lines of Latitude o Equator: 0 degrees o Tropic of Cancer: 23.5 degrees North o Tropic of Capricorn: 23.5 degrees South o Arctic Circle: 66.5 degrees North o Antarctic Circle: 66.5 degrees South o North Pole: 90 degrees North o South Pole: 90 degrees South  Major lines of Longitude o Prime Meridian: 0 degrees (line that runs through Greenwich and the  western­most tip of Africa) o International Date Line: 180 degrees (crooked line that runs down the  center of the Pacific Ocean, making Japan, Australia and everyone else,  one day ahead of the U.S.) 3) Lecture 3: Earth/Sun Relationships   Rotation vs Revolution o Rotation: The spinning of the earth on its axis  1 counterclockwise turn every 24 hours  Prevents one side of the Earth from facing the sun too long o Revolution: The movement of the Earth in its orbit around the sun.  1 orbit takes 365 days  Orbit is elliptically shaped (awkward oval shaped where one side of the  orbit path is really close to the sun, and the other side is really far away)  refer to vocab section for terms “Perihelion” and “Aphelion”   Seasons: Northern Hemisphere(NH) vs Southern Hemisphere(SH) (LY=Leap year) o Earth’s seasons are the result of the Earth’s rotation, revolution around the sun,  and the Earth’s axis tilt o Seasons: 12 months/4 seasons = 3 months/season  Winter: December, January, February  Spring: March, April, May  Summer: June, July, August  Fall: September, October, November o Solstices and Equinoxes  December Solstice  Dec. 21  or 22  (LY)  Start of winter in the NH, start of summer in the SH  March Equinox  March 21  or 22  (LY)  Start of spring in the NH, start of fall in the SH  June Solstice  June 21  or 22  (LY)  Start of summer in the NH, start of winter in the SH  September Equinox  September 22  or 23 (LY)  Start of fall in the NH, start of spring in the SH 4) Lecture 4­Weather vs. Climate: Structure of the Atmosphere   Composition: the atmosphere is made up of both variable and constant gases o Constant Gases in the atmosphere:  Nitrogen=78%  Oxygen=21%  Argon .9% o Variable Gases in the atmosphere:  Carbon Dioxide  Ozone  Water Vapor  Methane  "Ozone Hole"  o Holes in the atmosphere above the Polar Regions that are the result of the  seasonal depletion of ozone in the stratosphere. This is believed to be caused by  the increased amount of CFCs (Chlorofluorocarbons) in the air, leading to a faster breakdown of ozone molecules.  from Fall to Spring  Vertical Structure:  o Air Pressure: The force exerted by the weight of a column of air.   Air pressure decreases as height increases  Avg air pressure at sea level is 1013 mb (millibars)  o Temperature: The average molecular motion of an object  Temperature Lapse Rate: The rate of change in temperature with a change  in altitude. o Layers  Two general regions of the atmosphere:  Homosphere: the area of the atmosphere where the chemical  composition is uniform  Heterosphere: the area of the atmosphere where the chemical  composition is not uniform.   4 areas of the atmosphere (separated by temperature change that occurs  within them)  Troposphere: The area of the atmosphere where weather takes  place (this area of the atmosphere gets heated up by the Earth­heat  travels from the surface of the Earth upward­however, this is also  the layer where temperature usually decreases with altitude).  Stratosphere: The area of the atmosphere that contains the ozone  layer, and where temperature stays constant or increases with  altitude (above the troposphere).  Mesosphere: The area above the stratosphere, where temperature  also decreases with altitude.  Thermosphere: The outermost layer, above the mesosphere, where  temperature increases dramatically with altitude (due to exposure  to the sun’s radiation).  5) Lecture 5: Radiation Balance         Short Wave Radiation (SW) vs Long Wave Radiation (LW) o Hotter objects emit more total energy (or heat energy) than cooler objects.  The hotter the emitting body, the shorter the wavelength. The cooler the  emitting body, the longer the wavelength. o Shortwave Radiation: Electromagnetic waves that have a wavelength ~1  micron and smaller.  The sun’s max energy (a.k.a. SW) is radiated at .5 micrometers  o Longwave Radiation: Electromagnetic waves that have a wavelength ~1  micron and larger.  The Earth’s maximum energy (a.k.a. LW) is radiated at 10  micrometers.   LW can also be called terrestrial radiation  Carbon dioxide and water vapor are really good absorbers of LW.  Water vapor absorbs 5 times as much radiation as the other gases.    Scattering vs Reflection (a.k.a. albedo) vs Absorption  o Scattering: The process of incoming SW being redirected from its original  path by particles in the atmosphere. o Reflection: The process whereby a surface turns back a portion of the  radiation that strikes it (bounces off a surface).  31% of SW that hits the Earth is either reflected or scattered. The  albedo of the Earth is 31%  Albedo is the term to describe the percentage of radiation reflected  off a surface. o Absorption: The process whereby some of the energy of incoming SW  radiation is transferred into the object being struck.  45% of SW reaches the Earth’s surface  Another 24% of SW get absorbed by the atmosphere (i.e. clouds,  gases, dust, etc.)  Greenhouse effect: When some of the LW radiation emitted by the  Earth is trapped by the gases in the atmosphere. This effect heats  the Earth and the atmosphere (as the energy is bounced back and  forth, the Earth heats from the ground upward). 6) Lecture 6: Heat Balance   Types of Heat Transfer (3 Types) o Conduction: The process of transferring heat through matter, molecule by  molecule, by direct contact and transfer.  Conduction is an important mechanism for heating the Earth’s  surface, as well as the air that comes in contact with the surface  (keep in mind that the heat does not travel very high up into the  atmosphere).  As heat energy flows through a substance via conduction, the  energy will flow from an area of higher temperature to an area of  lower temperature.   o Convection: The process of transferring heat through matter by mass  movement of material within the substance.  Convection is the most important mechanism of heat transfer in the atmosphere (2 ways):  Sensible Heat Flux: Transfer of energy using the dry  components/molecules of the air (i.e. Carbon dioxide, etc.).  Latent Heat Flux: Transfer of energy using water vapor  molecules (evaporation and condensation). o Latent energy works by adding heat energy to a  substance. The energy does not change the  temperature of the substance, but it does change the  state of the substance (i.e. solidliquid or  liquidgas) o Radiation: The wavelike transfer of energy.  Heat Budget: How the Earth system balances the energy of  incoming radiation (SW) with outgoing radiation (LW).  If there was no heat budget, the Earth would be too cold or too hot.  The radiation allowed by the heat budget varies temporally  (over time) and spatially (over area/space). Spatially, the  tropics get more SW than anywhere else. Temporally, day  gets more SW than night, and summer gets more intense  SW than winter.  7) Lecture 7: Global T° Distribution  T° vs Heat o Temperature: A measure of the average kinetic enery of the atoms and  molecules of an object or substance. o Heat: Total kinetic energy of the atoms and molecules of an object or  substance. o Temperature is NOT heat!  Six(6) Controls on T° o Receipt of Solar Radiation: The amount of solar radiation (SW) a location  receives.  This is the primary control of temperature on the Earth’s surface o Differential Heating of Land and Water Surfaces: Land surfaces cool and  warm more quickly than water surfaces. Land temperatures also cool to  lower temperatures and warm up to higher temperatures than water.  Why? Water is transparent, so SW goes right through it. Whereas  land is opaque. SW hits the ground and begins to warm it up  Once the water has been heated, water turbulence and movement  cause the heated water to be replaced by cooler water.  The specific heat of water is 3x greater than that of land (refer to  vocab for definition of specific heat) meaning it takes more solar  energy (SW) to heat up water than land. This means that land that  is closer to water has less temperature variations than land that is  away from water. This phenomenon is also called continentality. o Geographic Setting and Position: Temperature differences brought about  by a location being on one side of a continent versus the other (this is  related to wind patterns).  Windward: In the U.S., this term means wind that is coming off a  water’s surface (the side/direction the wind is coming from).  Leeward: In the U.S., this term means wind is coming off a land’s  surface. o Ocean Currents:  o Elevation: Locations at higher elevations usually have lower average  annual temperatures compared to lower locations (b/c in the troposphere,  temperature decreases with altitude). o Cloud Cover and Albedo: these two factors control the levels of solar and  terrestrial radiation at the Earth’s surface.  Clouds trap in terrestrial radiation (LW), keeping the surface  warmer. Clouds can also reflect solar radiation (SW), keeping the  surface cooler.   A cloudy day is cooler than a clear day (usually)  A cloudy night is usually warmer than a clear night  Convert °C to °F & back o C= (F ­ 32) x 5/9 o F= (C x 9/5) + 32  Wind­chill factor and Heat Index o Wind Chill Temperature Index: The effect of wind and temperature on a  person’s body.  i.e. Hypothermia o Heat Index: The effect of humidity and temperature on a person’s body  i.e. heat cramps, heat exhaustion, heat stroke, etc. 8) Lecture 8: Air Pressure & Wind            Pressure Gradient Force: The difference in barometric (air) pressure between two  points.  o Air Pressure: The force of the air pushing down on a surface. o If the difference in PGF is horizontal, this will initiate advection  Advection: the horizontal movement of air ( a.k.a. wind)  A steep pressure gradient means there is a strong PGF. A strong  PGF will yield stronger and faster winds.  A gentle pressure gradient means there is a weak PGF. A weak  PGF will yield weaker and slower winds.  Winds will flow from an area of higher pressure toward an area of  lower pressure. o Why do winds occur?  Differential heating: Differences in pressure set­up by differences  in temperature cause a portion of the Earth’s surface to receive  more energy and heat up. As the air heats up, it rises to a place of  lower air/bariometric pressure. Colder air at the top of the  troposphere sinks, forming a place of higher air/bariometric  pressure.   As air sinks and rises, it spreads out from the center at which it  rose/sunk causing warm and cold air to mix (i.e. rising air mixes  with cold air still near the top of the troposphere. Sinking air mixes with warm air still at the surface of the Earth).  The mixing of the 2 different temperatures causes wind.   Coriolis Force: the apparent deflection in movement of an object (i.e. planes,  ocean currents, wind, etc.) from a straight path due to the Earth’s rotation.  o In the northern hemisphere, objects trying to make a straight path will get  deflected to the right. o In the southern hemisphere objects trying to make a straight path will get  deflected to the left.  2 types of winds: Geostrophic vs. Surface Winds  o Geostrophic Winds: Winds that flow 1­2 kms above the Earth’s surface.   Geostrophic winds flow parallel to isobars  2 patterns Geostrophic Winds Follow:  Zonal Flow: A pattern in which the wind exhibits a  ‘flattened’ air flow with a primarily east to west orientation.  Meridional Flow: A pattern in which the wind exhibits a  more curved flow with ridges, and troughs, showing amore  north to south orientation.  o Surface Winds: Winds which flow below 1­2 kms altitude and thus are in  contact with the Earth’s surface. Surface winds flow across isobars.  Surface winds are affected by Coriolis Force and Friction Force  Friction Force: When force from blowing against the ground  causes wind to flow across isobars.  Vocabulary:  Geography: The study and analysis of the spatial and temporal distribution of  phenomena on the Earth’s surface.   System: All the factors influencing an area or particular phenomena.  Open System: Where the boundaries or interfaces between parts of the same  system and other systems allows for the free transfer of energy and matter across  them.  Closed System: Self­contained exhibiting no exchange of energy or matter across  boundaries.  Equilibrium State: The changing, or relatively non­changing, conditions of a  system (in the effort to move towards equilibrium).  Steady­State Equilibrium: When a system is in balance over time (neither  growing nor contracting but is in full operation).  Dynamic Equilibrium: When a system exhibits wide fluctuates around an average  value, and in which the average demonstrates a trend over time.  Feedback Mechanism: A process by a which when the normal operations of a  system cause a portion of the system’s output to be returned as information input.  Negative Feedback: To slow or reduce responses in a system and promote self­ regulation of the system to keep the system in its original condition by inhibiting  change.  Positive Feedback: To amplify or encourage responses in a system by inducing  progressively greater changes in other parts of the system.  Geoidal Bulge: The bulge around the equator of the Earth causing the Earth to be  wider around the equator and shorter between the poles.   Degree: 1 of 360 equal parts of a circle.  Minute (‘): 1 of 60 equal parts of a degree.  Second (“): 1 of 60 equal parts of a minute.  Time Zones: The 15 degree separations, done by lines of longitude, which  determine what time it is.  Distortion: Problems with transferring a found object to a flat surface, causing the  physical size and shape to be reflected slightly incorrectly.  Scale: The ratio of distance on the map to the actual distance on the ground.  Representative Fraction: A fraction that compares the ratio of distance on a map  to the distance on Earth.  Large Scale (Map): Map that shows a relatively small are of the Earth’s surface in large detail.  Small Scale (Map): Map that shows a relatively large area of the Earth’s surface  with less detail.  Perihelion: When the Earth and the sun are closest to each other (Jan. 4 )  Aphelion: When the Earth and the sun are furthest apart (July 4 )  Axial Parallelism: The orientation of the North Pole of the Earth toward a specific star.  Inclination of the Axis: Earth’s current orientation to the sun as a result of Earth’s  tilt.  Summer: Season characterized by intense sunlight and more energy  Winter: Season characterized by less intense sunlight and less energy  Solar Altitude: The angle of the sun above the horizon at any given latitude.  Circle of Illumination:   Weather: Day­to­day conditions of the atmosphere  Climate: The statistical properties of the atmosphere (including measures of the  average conditions, variability, etc.) over long periods of time.  Meteorology: The science that studies the atmosphere and its processes on a  short­term basis.  Climatology: The study of long­term atmosphere conditions.  Constant Gases: the gases found in the same proportions within the lower  atmosphere.  Variable Gases: The gases present in differing amounts spatially and/or  temporally within the lower atmosphere.  Greenhouse Gases: Gases that absorb radiant energy, and help regulate surface  temperatures on the Earth (i.e. Carbon dioxide, methane, water vapor, nitric  oxides).  Ozone: A component of atmosphere that absorbs damaging ultraviolet rays and is  concentrated in the stratosphere.  Temperature Inversion: If the temperature increases with altitude (in the  Troposphere).   Energy: The ability or capacity to do work on some form of matter.  Potential Energy: The energy of an object prior to it being released as free energy  (energy at rest).  Kinetic Energy: The free energy of motion (action).  Heat Energy: The sum total of all molecular motion of an object.  Radiant Energy: The energy transferred as electromagnetic waves by all objects  with a temperature greater than 0 degrees Kelvin (all objects with a temperature  greater than 0 degrees Kelvin will emit radiation).  First Law of Thermodynamics: Energy is neither destroyed nor created, but it may be converted from one form to another.  Second Law of Thermodynamics: When energy is changed from one form to  another, some of the useful energy is always degraded to lower­quality, more  dispersed, less useful energy.  Electromagnetic Spectrum (Radiation): Light, heat, radio, X­rays, etc.  Infrared Spectrum: Portion of the wavelength spectrum where radiant energy is 1­ 30 micrometers in length (where the Earth’s radiant energy falls).  Heat Energy: The total kinetic energy of all the atoms and molecules of an object.  Conductors: Substances that transfer heat easily via conduction (i.e. most metals,  solids, etc.).  Insulators: Substances that cannot easily transfer heat via conduction (i.e. air, etc.)  Isotherm: A line on a map or chart which connects points of equal temperature.  Specific Heat: The heat needed to raise 1 gm of a substance 1 degree Celsius (the  specific heat of water is 3x greater than the specific heat of land).


Buy Material

Are you sure you want to buy this material for

50 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Bentley McCaw University of Florida

"I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"

Janice Dongeun University of Washington

"I used the money I made selling my notes & study guides to pay for spring break in Olympia, Washington...which was Sweet!"

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."


"Their 'Elite Notetakers' are making over $1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.