New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Chapter 9 Study Guide

by: Shannon L

Chapter 9 Study Guide Math 1100

Marketplace > University of Utah > Math > Math 1100 > Chapter 9 Study Guide
Shannon L
The U

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

Upcoming Midterm on 02/05/15
Business Calculus
Bin Xu
Study Guide
50 ?




Popular in Business Calculus

Popular in Math

This 5 page Study Guide was uploaded by Shannon L on Monday February 1, 2016. The Study Guide belongs to Math 1100 at University of Utah taught by Bin Xu in Winter 2016. Since its upload, it has received 61 views. For similar materials see Business Calculus in Math at University of Utah.


Reviews for Chapter 9 Study Guide


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 02/01/16
:HE 0DWK▯▯▯▯▯▯▯VHFWLRQ▯▯▯▯▯▯6SULQJ ▯▯▯▯ 3HUVRQDO▯6WXG\▯3ODQ▯▯▯▯▯▯'HULYDWLYHV 6+$1121▯/(**( 0DWK▯▯▯▯▯▯▯VHFWLRQ▯▯▯▯▯ 6SULQJ▯▯▯▯▯ ,QVWUXFWRU▯▯%LQ▯;X 8QLYHUVLW\▯RI▯8WDK 4XHVWLRQV 1. Question from 9.1: Limits ▯ During the first 4 months of employment, the monthly sales S (in thousands of dollars) for a new salesperson depend on the number of hours x of training, as follows. 6 x S = S(x) =   + 12 +  ,    x ≥ 4 x 4 (a) Find  lim  S(x).   x→ 4    thousands of dollars  (b) Find  lim  S(x).   x→ 12   thousands of dollars 2. Question from 9.1: Limits ▯ Complete the table and predict the limit, if it exists. (Round your answers to three decimal places. If the limit is infinite, enter ∞ ' or '∞', as appropriate. If the limit does not otherwise exist, enter DNE.) 2 f(x) =  40 − 3x − x x − 5 x f(x) 4.9 4.99 4.999 5.001 5.01 5.1 lim f(x) =  x →5  3. Question from 9.2: Continuous Functions; Limits at Infinity ▯ If an annuity makes an infinite series of equal payments at the end of the interest periods, it is called a perpetuity. If a lump sum investment of A  is nneded to result in n periodic payments of R when the interest rate per period is i, then −n An = R 1 − (1 + i) . i (a) Evaluate  lim  A  to find a formula for the lump sum payment for a perpetuity.  n → ∞  n   (b) Find the lump sum investment needed to make payments of $110 per month in perpetuity if interest is 6%, compounded monthly. (Round your answer to the nearest cent.)  $  4. Question from 9.2: Continuous Functions; Limits at Infinity ▯ Determine whether the function is continuous or discontinuous at the given x­value. Examine the three conditions in the definition of continuity. 2 f(x) =  x  + 4     if x ≤ 1,    x = 1 2     if x > 1 8x  − 2 The function is continuous at x = 1. The function is discontinuous at x = 1.     5. Question from 9.3: Rates of Change and Derivatives ▯ If an object is thrown upward at 128 feet per second from a height of 60 feet, its height S after t seconds is given by the following equation. S(t) = 60 + 128t − 16t 2 (a) What is the average velocity in the first 4 seconds after it is thrown?   ft/sec  (b) What is the average velocity in the next 4 seconds?   ft/sec 6. Question from 9.3: Rates of Change and Derivatives ▯ 2 We are given  f(x) = 3x  and fௗ'(x) = 6x. (a) Find the instantaneous rate of change of  f(x)  at  x = 4.     (b) Find the slope of the tangent to the graph of  y = f(x)  at  x = 4.     (c) Find the point on the graph of  y = f(x)  at  x = 4.   (x, y) =      7. Question from 9.4: Derivative Formulas ▯ Find the derivative of the function. 5 3 h(x) =  5  −  3 + 8 x x x h'(x) =  8. Question from 9.4: Derivative Formulas ▯ Find the derivative of the function. h(x) = 14x 12  + 6x  − 2x  + 19x − 7 h'(x) =  9. Question from 9.5: The Product Rule and the Quotient Rule ▯ A travel agency will plan a group tour for groups of size 35 or larger. If the group contains exactly 35 people, the cost is $270 per person. If each person's cost is reduced by $10 for each additional person above the 35, then the revenue is given by the equation shown below, where x is the number of additional people above 35. R(x) = (35 + x)(270 − 10x) Find the marginal revenue if the group contains 40 people.   $     Interpret your result.   The revenue will decrease by the absolute value of the marginal revenue in dollars if the group adds one person. The revenue will increase by the absolute value of the marginal revenue in dollars if the group adds one person.     The revenue will decrease by the absolute value of the marginal revenue in dollars if the group removes one person. The revenue will increase by $1 if the group adds the absolute value of the marginal revenue number of people. The revenue will decrease by $1 if the group adds the absolute value of the marginal revenue number of people. 10. Question from 9.5: The Product Rule and the Quotient Rule ▯ For the function  y = (x  + 1)(x  − 4x),  at  (−2, 0)  find the following. (a) the slope of the tangent line    (b) the instantaneous rate of change of the function  11. Question from 9.6: The Chain Rule and the Power Rule ▯ Ballistics experts are able to identify the weapon that fired a certain bullet by studying the markings on the bullet. Tests are conducted by firing into a bale of paper. If the distance s, in inches, that the bullet travels into the paper is given by s = 125 − (5 − 10t) 3 for 0 ≤ t ≤ 0.5 second, where t is the time in seconds after the bullet hits the paper, find the velocity of the bullet one­tenth of a second after it hits the paper.    ft/sec 12. Question from 9.6: The Chain Rule and the Power Rule ▯ Differentiate the function. f(x) = (2x  − 1) 24 fௗ'(x) =    13. Question from 9.7: Using Derivative Formulas ▯ The total physical output P of workers is a function of the number of workers, x. The function  P = f(x)  is called the physical productivity function. Suppose that the physical productivity of x construction workers is given by P = 7(3x + 6)  − 15. Find the marginal physical productivity, dP/dx.   dP/dx =    14. Question from 9.7: Using Derivative Formulas ▯ Find the derivative of the function. Simplify and express the answer using positive exponents only. y = (x  − 3)(x + 6) y' =    15. Question from 9.8: Higher­Order Derivatives ▯ A particle travels as a function of time according to the formula 3 s = 140 + 9t + 0.09t where s is in meters and t is in seconds. Find the acceleration of the particle when  t = 3.     m/sec 2 16. Question from 9.8: Higher­Order Derivatives ▯ Find the second derivative. y = x  −  x   y'' =    17. Question from 9.9: Applications: Marginals and Derivatives ▯ The price of a product in a competitive market is $500. If the cost per unit of producing the product is 110 + 0.1x dollars, where x is the number of units produced per month, how many units should the firm produce and sell to maximize its profit?  units 18. Question from 9.9: Applications: Marginals and Derivatives ▯ Total revenue is in dollars and x is the number of units.   Suppose that in a monopoly market, the demand function for a product is given by p = 420 − 0.2x where x is the number of units and p is the price in dollars. (a) Find the total revenue from the sale of 500 units.  $    (b) Find the marginal revenue MR at 500 units.  MR = $    Interpret this value.  The 501st unit will bring in |MR| hundred dollars more in revenue. The 501st unit will lose |MR| hundred dollars more in revenue.     The 501st unit will lose |MR| dollars more in revenue. The 501st unit will bring in |MR| dollars more in revenue. (c) Is more revenue expected from the 501st unit sold or from the 701st? Explain. The 701st unit will bring in $   more in revenue. Thus the  ▯▯▯6HOHFW▯▯▯  unit will bring in more revenue.


Buy Material

Are you sure you want to buy this material for

50 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Kyle Maynard Purdue

"When you're taking detailed notes and trying to help everyone else out in the class, it really helps you learn and understand the I made $280 on my first study guide!"

Bentley McCaw University of Florida

"I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"

Parker Thompson 500 Startups

"It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.