New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here


by: Katharyn Taylor

MICRO STUDY GUIDE EXAM 1 Microbiology 210

Katharyn Taylor

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

This is a full study guide for exam 1, comprised of information from the notes, audio files, and readings. Thank you for checking out my study guide, and good luck on the exam!
Elizabeth McPherson
Study Guide
50 ?




Popular in Microbiology

Popular in Biology

This 14 page Study Guide was uploaded by Katharyn Taylor on Wednesday February 3, 2016. The Study Guide belongs to Microbiology 210 at University of Tennessee - Knoxville taught by Elizabeth McPherson in Summer 2015. Since its upload, it has received 315 views. For similar materials see Microbiology in Biology at University of Tennessee - Knoxville.




Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 02/03/16
MICROBIOLOGY  STUDY  GUIDE  –  EXAM  1   CHAPTER  1   •   WHAT  ARE  MICROORGANISMS?   o   Organisms  too  small  to  see  with  the  naked  eye  that  can  live  as   clusters  or  as  individual  cells   •   WHAT  DO  MICROBES  DO  ON  EARTH?   o   First  living  inhabitants.  They  are  ubiquitous  which  means  they   can  be  found  almost  everywhere,  and  they  live  in  places  that  no   other  organisms  can   o   Anoxgenic  and  Oxygenic  Photosynthesis,  changed  the   atmosphere  and  produces  energy  as  the  base  trophic  level   o   Vital  to  nutrient  recycling,  breaking  down  dead  things  that  can   be  reused  by  other  organisms   •   HOW  HAVE  HUMANS  USED  AND  CHANGED  MICROBES?   o   Old  examples  -­‐  yeast,  cheese,  moldy  bread  on  wounds.  People   knew  certain  things  worked  but  were  unaware  of  the   microbiology  behind  the  practices   o   Now  -­‐  genetic  engineering,  (recombinant  DNA)  bioremediation   (microbes  introduced  to  restore  stability  to  an  ecosystem)   •   HOW  MUCH  HUMAN  DISEASES  IS  CAUSED  BY  MICROBES?   o   Most  microbes  that  we  come  into  contact  with  do  not  make  us   sick.  Only  about  2000  pathogenic  microbes   o   Still  most  common  cause  of  death  is  infectious  disease   o   Vaccines  and  antibiotics  help  control  pathogens,  but  microbes   can  evolve  to  be  drug  resistant   •   BACTERIA  &  ARCHAEA   o   Prokaryotes  (no  membrane  bound  nucleus  and  some   membranous  organelles)  and  very  small   o   Live  in  moist  habitats  (almost  everywhere)  and  few  are  disease   causing  when  colonized  in  humans   •   EUKARYOTIC  MICROBES   o   Fungi  –  can  be  single  cell  or  filamentous.  Cell  wall  made  of  chitin.   Break  down  organic  matter  for  food.  Two  types  of  microbe  fungi   §   Molds  –  multicellular,  hyphae,  sexual  and  asexual   §   Yeasts  –  unicellular,  asexual  (budding)  or  sexual  spores   o   Protozoa  –  single  celled  with  at  least  one  nucleus.  No  cell  wall.   Live  in  water  or  in  animal  host.  Locomotive  through   pseudopodia,  cilia,  or  flagella   o   Algae  –  unicellular  or  multicellular.  Photosynthetic.  The   unicellular  ones  make  most  of  the  world’s  oxygen.  Live  in  water.   Simple  reproductive  structures,  and  are  categorized  by  color  and   cell  wall  makeup.  No  medical  importance   •   OTHER  THINGS  MICROBIOLOGISTS  STUDY   o   Parasitic  worms  –  eukaryotes,  adults  are  macroscopic  but   microbiologists  study  microscopic  eggs  and  immature  ones  that   infect  animal  hosts   o   Viruses  –  no  eukaryotic  or  prokaryotic  classification,  not   technically  alive.  Must  have  host  and  are  much  simpler  than  cells   •   WHO  STUDIED  SPONTANEOUS  GENERATION?   o   This  is  the  idea  that  there  are  three  types  of  ‘reproduction’   including  asexual,  sexual,  and  generation  from  nonliving  matter,   also  referred  to  as  abiogenesis  (compared  to  biogenesis).  This   third  one  was  Aristotle’s  idea   2   o   Redi  performed  an  experiment  where  he  kept  meat  away  from   flies  and  in  exposure  to  flies  and  determined  that  no  organisms   besides  microbes  can  arise  spontaneously   o   Needham  experimented  when  scientist  believed  that   microbes   were  the  only  things  that  could  arise  spontaneously.    He  boiled   beef  gravy  and  plant  material  and  sealed  a  container  and  it   became  cloudy,  which  he  took  to  mean  that  microbes  could,  in   fact,  generate  spontaneously   o   Spallanzani  repeated  Needham’s  experiment  but  found  that  no   microbes  survived  and  concluded  that  Needham’s  were   contaminated  and  spontaneous  generation  was  impossible.   Critics  said  microbes  needed  air  to  live   o   Pasteur  proved  Spallanzani’s  theory  and  silenced  critics   •   IS  THIS  CONCEPT  ACCURATE?   o   No.  This  concept  is  not  accurate.  Any  microbes  that  developed  in   the  liquids  came  from  microbes  in  the  air,  and  had  no  microbes   been  present  in  the  vial,  none  would  have  developed.  Microbes   cannot  generate  spontaneously   •   SCIENTIFIC  METHOD   o   Developed  after  the  spontaneous  generation  debates.  Four   steps:  1.  Ask  a  question,  2.  Think  of  a  potential  answer,  3.  Design   and  carry  out  an  experiment,  4.  Accept,  reject,  or  modify  answer   o   Control  groups  are  important  to  have  something  to  compare   your  tested  variable  to             3   •   KOCH’S  POSTULATES   o   Studied  the  cause  of  anthrax,  and  proved  that  Bacillus  anthracis   cause  the  disease.  Developed  isolation  techniques  for  studying   microbe  colonies   o   His  identification  criteria  were:  1.  Microbe  must  be  present  in  all   cases  of  the  disease,  2.  The  pathogen  can  be  taken  from  the  host   and  and  grown  in  a  culture,  3.  The  cultured  pathogen  can  cause   the  same  disease  in  a  lab  animal,  4.  The  pathogen  can  be  taken   from  a  new  host  and  be  the  same  as  the  original  pathogen  from   the  first  host   •   BINOMIAL  NAMES   o   Named  based  on  description,  the  scientist  who  discovered  it,  the   place  where  it  was  found,  or  the  organization  that  funded  its   research  with  a  Greek  ending   o   Genus  species   CHAPTER  3   •   FOUR  MAJOR  PROCESSES  OF  LIVING  CELLS   o   Growth,  Responsiveness  to  environment,  Reproduction,   Metabolism,  and  maintaining  a  structure  that  carries  out  all  four   of  these  functions   •   GLYCOCALYCES:  COMPOSITION,  FUNCTION,  RELEVANCE   o   All  bacterial  cells  have  some  form  of  a  glycocalyx,  which  is   essentially  just  a  surface  coating  made  of  polysaccharides,   peptides,  or  a  combination  of  the  two   o   They  play  a  role  in  osmotic  control:  preventing  the  cell  from   drying  out  or  taking  in  too  much  water   •   CAPSULES  VS  SLIME  LAYERS   o   Bacteria  have  one  of  these,  never  both   4   o   Capsule  –  organized,  repeated  chemicals.  They  are  anchored  to   the  cell  surface,  and  they  are  useful  for  camouflage  in  the  host.   They  can  be  made  of  chemicals  like  the  ones  found  in  humans,   and  thus  the  immune  system  may  not  always  recognize  these   bacterial  cells  as  foreign  and  white  blood  cells  won’t  attach   o   Slime  layer  –  loosely  covering,  easily  washed  away  with  water.  It   is  sticky  and  lets  bacteria  form  biofilms   •   BACTERIAL  FLAGELLA   o   Push  bacteria  toward  a  stimulus  by  spinning  counterclockwise   through  a  “run”  or  turn  away  from  stimuli  by  spinning  clockwise   in  a  “tumble.”  These  movements  due  to  stimuli  are  called  taxis   (phototaxis  or  chemotaxis  depending  on  the  stimulus)   o   Three  pieces:  filament  (shaft  made  of  flagellin  and  not  covered   by  a  membrane),  hook  (holds  the  base  of  the  filament),  and   basal  body  (anchor  to  the  cell  wall  and  plasma  membrane)   o   Four  rings  of  integral  proteins  in  the  basal  body  indicates  Gram-­‐,   while  two  rings  of  these  proteins  indicates  Gram+   o   Cells  can  have  multiple  flagella   •   FIMBRIAE,  PILI,  &  FLAGELLA   o   Fimbriae  –  sticky  bristles.  Help  bacteria  stick  to  each  other  or   two  something  in  the  environment.  They  are  grappling  hooks   that  can  also  help  with  communication  through  electrical  signals   within  a  biofilm   o   Pili  –  special  kind  of  longer  fimbriae.  Can  transfer  DNA  between   cells  (called  conjugation).  Like  a  bridge  from  one  cell  to  another   •   GRAM+  &  GRAM-­‐  BACTERIA:  STRUCTURE  &  STAINING   o   Cell  walls  provide  structure  and  shape.  Since  animal  cells  don’t   have  cell  walls,  we  can  use  medicines  that  target  cell  wall   components  to  get  rid  of  bacterial  infections  without  harming   our  own  cells   5   o   All  bacterial  cell  walls  have  a  peptidoglycan  layer  made  of   alternating  NAG  and  NAM  sugars  (peptidoglycan  should  always   and  only  be  associated  with  bacteria)   o   Gram  positive  –  thicker  layer  of  peptidoglycan,  and  therefore   thicker  cell  wall.  Teichoic  acids  are  imbedded  in  the  membrane.   These  are  linked  to  lipid  anchors  on  the  plasma  membrane.   Acidic  outer  shell  (all  acid-­‐fast  bacteria  are  gram+,  it  helps  them   resist  drying)   o   Gram  negative  –  more  complex  despite  having  a  thinner  wall   and  less  peptidoglycan.  They  have  a  more  disorganized   membrane  that  goes  outside  the  peptidoglycan  cell  wall .  Their   outer  membrane  is  made  of  two  layers:  the  inner  layer  a  ty pical   phospholipid  &  protein  combo,  and  the  outer  layer  a   lipopolysaccharide  (LPS)  barrier.  This  LPS  contains  endotoxin   (lipid  A).  Channels  in  this  outer  membrane  are  called  porins   Gram-­‐  also  have  perplasmic  space  between  the  plasma   membrane  and  this  complicated  outer  membrane.   o   Gram  staining  can  differentiate  between  the  two  types  of   bacterial  cell  walls.  Acidic  gram+  holds  onto  the  crystal  violet  dye   and  gram-­‐  holds  onto  the  red   •   GRAM-­‐  CELL  WALL:  A  CLINICAL  LOOK   o   Because  Gram  negative  cell  walls  have  endotoxin  (lipid  A)  in   their  outer  layer  of  the  outer  membrane,  they  are  more  difficult   to  treat.  If  an  antibacterial  drug  kills  a  gram  negative  bacteria   inside  the  body,  the  endotoxin  will  be  released  and  can  be   potentially  lethal  in  certain  quantities  when  it  causes  fever,   vasodilation  inflammation,  shock,  and  blood  clotting         6   •   FLUID  MOSAIC  MODEL   o   This  describes  membrane  structure  as  we  understand  it   currently.  The  components  of  the  membrane  are  arranged  in  a   certain  fitted  together  ‘mosaic’  pattern,  and  they  are  attached,   but  have  a  certain  fluidity  to  this  attachment  to  their  neighbors.   They  can  slide  past  each  other  without  changing  the  makeup,   but  the  integral  proteins  have  certain  other  proteins  they  need   to  be  near,  so  the  parts  of  the  membrane  with  specific  proteins   move  as  a  block  in  order  for  them  to  still  work  as  they  should   •   CYTOPLASMIC  MEMBRANE  FUNCTIONS:  PERMEABILITY   o   Membranes  have  to  semi-­‐permeable  (allow  at  least  some  things   in)  because  living  things  need  to  take  in  nutrients  to  use  and   expel  waste  to  make  room  for  things  they  use   o   About  half  of  the  membrane  is  made  up  of  proteins.  These   proteins  do  different  things.  They  can  be  receptors,  recognition   proteins,  enzymes,  carriers,  or  channels.  Some  kinds  go  all  the   way  through  the  membrane  (integral),  while  others  are   embedded  in  only  half  (peripheral)   •   ACROSS  THE  MEMBRANE:  PASSIVE  &  ACTIVE   o   Passive  transport  processes  –  high  to  low  concentration,  no   energy  expended  to  move  particles   §   Diffusion  –  movement  directly  across  the  membrane   without  a  channel  protein   §   Specific  facilitated  diffusion  –  movement  through  a   channel  that  only  allows  a  certain  kind  of  molecule   through  the  channel   §   Nonspecific  facilitated  diffusion  –  movement  through  a   channel  that  allows  whatever  will  fit  to  pass  through   §   Osmosis  –  water  movement  across  the  membrane  with  or   without  a  channel  protein   7   o   Active  transport  processes  –  low  to  high  concentration,  requires   the  use  of  energy  to  move  particles   §   Uniport  –  movement  of  one  type  of  molecule,  one  at  a   time  against  the  gradient   §   Antiport  –  a  trade  of  two  molecules  on  opposite  sides  of   the  membrane,  both  against  their  respective  gradients   §   Symport  –  coupling  of  a  uniport  with  a  specific  facilitated   diffusion.  A  molecule  is  pumped  across  against  its   gradient,  and  then  it  picks  something  up.  It  then  crosses   back  through  a  specific  channel  protein  that  only  lets   those  molecules  that  have  ‘picked  up’  what  the  cell  wants   it  to  through  the  membrane   §   Group  translocation  –  the  molecule  passing  through  the   channel  against  the  gradient  is  altered  in  some  way.   Usually  the  molecule  is  changed  into  something  that   cannot  pass  back  across  the  membrane,  so  it  is  stuck   inside  of  the  cell  after  passing  through  the  membrane.  It   only  occurs  in  some  bacteria,  and  this  is  the  first  step  of   some  bacteria’s  metabolic  action                       8   •   ISOTONIC,  HYPERTONIC,  &  HYPOTONIC   o   It  is  important  to  use  these  terms  relatively  in  order  for  them  to   make  sense.  A  solution  is  (insert  one  of  the  three  terms  here)  to   the  cell  because  of  their  relative  concentrations  of  solute   o   Isotonic  –  equilibrium.  The  concentrations  of  solute  are  about   the  same  inside  and  outside  of  the  cell   o   Hypertonic  –  the  environment  is  hypertonic  to  the  cell  when  it   has  a  higher  concentration,  or  more  solute,  than  the  cell .  In  this   scenario,  water  will  flow  out  of  the  cell,  and  the  potential  danger   is  that  the  cell  could  dehydrate,  shrivel  up,  and  die   o   Hypotonic  –  the  environment  is  hypotonic  to  the  cell  when  it  has   a  lower  concentration,  or  less  solute,  than  the  cell .  In  this  case   water  will  flow  into  the  cell  to  attempt  to  even  out  the   concentrations,  and  the  cell  may  burst   o   The  bacterial  cell  wall  is  rigid  and  protects  against  these  osmotic   forces,  however  if  there  is  any  weak  spot  in  the  cell  wall,  osmotic   forces  can  cause  the  cell  to  collapse   •   BACTERIAL  CYTOPLASM   o   Cytosol  –  liquid  of  the  cytoplasm.  Many  substances  like  ions,   carbs,  proteins,  lipid,  and  wastes  are  dissolved  into  it.  Nucleoid   region  of  the  cytosol  has  the  DNA.  Plasmids  (small  ‘optional’   sections  of  independent  DNA  that  help  the  cell  with  resistance)   also  float  around  in  this  stuff   o   Inclusions  –  storage  deposits  of  something  the  cell  is  saving  to   use.  This  could  be  gases,  lipids,  starch,  nitrogen,  phosphate,   sulfur,  magnetite,  etc.         9   o   Ribosomes  –  nonmembranous  organelle  that  synthesizes   proteins  for  the  cell.     o   Cytoskeleton  –  some  bacteria  have  this.  It  is  an  internal   scaffolding  made  of  protein  fibers.  Can  serve  both  a  structural   and  a  transportational  purpose   o   Endospores  –  only  some  bacteria  produce  these.  They  are  NOT   reproduction,  but  a  survival  mechanism.  Basically  a  way  for  the   cell’s  DNA  to  stay  dormant  and  protected  until  the  environment   becomes  favorable  for  the  cell  to  live  again   •   RIBOSOMES:  PROKARYOTES  VS  EUKARYOTES   o   Bacteria  have  70S  ribosomes  with  a  30S  and  a  50S  subunit.  Drugs   that  target  these  subunits  are  useful  antibacterials  because  our   ribosomes  are  80S  with  40S  and  60S  subunits   o   However,  drugs  that  target  bacterial  ribosomes  can  still  impact   our  cells  because  we  have  mitochondrial  ribosomes  that  are   analogous  to  bacterial  ones.  This  means  that  antibacterials  that   target  70S  ribosomes  can  inhibit  the  ribosomal  activity  of  our   mitochondria  and  therefor  shut  down  our  cells’  powerhouses   •   EUKARYOTIC  GLYCOCALYCES:  COMPOSITION,  STRUCTURE,  &  FUNCTION   o   In  eukaryotes  these  are  only  found  in  animals  and  protozoa   (kingdoms  without  cell  walls)   o   Comparable  to  a  slime  layer  in  that  they  are  disorganized  and   sticky.  They  help  cells  stick  to  each  other  and  they  strengthen   the  cell  surface.  They  serve  as  a  recognition  mechanism  and  they   protect  against  dehydration   •   CELL  WALLS  &  MEMBRANES:  PROKARYOTES  VS  EUKARYO TES   o   Fungi,  algae,  plants,  and  some  protozoa  have  cell  walls  but  they   do  not  have  a  glycocalyx   o   It  helps  protect  the  cell,  gives  it  shape,  and  deals  with  osmotic   pressure.  These  cell  walls  do  NOT  have  peptidoglycan   10   o   Similarities  between  the  membranes  include  the  fluid  mosaic   structure  and  the  types  of  proteins  in  the  membrane.   Differences  include  the  inclusion  of  steroid  lipids  and  sugar   signaling  molecules  in  eukaryotes   o   Eukaryotes  are  capable  of  endocytosis  (and  therefore   phagocytosis,  pinocytosis,  and  exocytosis)   •   CYTOPLASM:  PROKARYOTES  VS  EUKARYOTES   o   Prokaryotes  have  the  same  kinds  of  nonmembranous  organelles,   but  they  lack  some  membranous  organelles  in  the  cytoplasm   o   The  cytoplasmic  makeup  is  virtually  the  same,  except  eukaryotes   don’t  have  plasmids   o   Eukaryotes  have  the  smooth  and  rough  endoplasmic  reticulum   •   FLAGELLA:  PROKARYOTES  VS  EUKARYOTES   o   Eukaryotic  flagella  have  cytoplasm  inside.  They  are   an  extension   of  the  membrane,  as  opposed  to  the  prokaryotic  flagella  which  is   embedded  in  the  membrane.  This  means  that  the  eukaryotic   flagella  undulates  instead  of  rotating   •   EUKARYOTIC  MEMBRANOUS  ORGANELLES   o   Nucleus,  endoplasmic  reticulum,  Golgi  body,  lysosomes,   peroxisomes,  vacuoles,  vesicles,  mitochondria,  and   chloroplasts   •   ENDOSYMBIOTIC  THEORY   o   Widely  accepted,  but  not  universally   o   Eukaryotes  came  about  when  a  large  anaerobic  prokaryote  took   in  and  formed  a  symbiotic  relationship  with  a  parasitic,  aerobic   prokaryote.  When  the  cells  divided,  the  parasites  would  divide   as  well  and  would  be  found  in  both  daughter  cells.  The  larger  cell   became  dependent  on  the  small  cell  for  energy,  and  the  small   cell  needed  the  big  cell  for  resources  and  protection.  This   explains  mitochondrial  and  chloroplastal  similarity  to  bacteria   11     CHAPTER  5   •   METABOLISM,  ANABOLISM,  &  CATABOLISM   o   Metabolism  –  obtaining  energy  and  nutrients  necessary  for   survival  by  breaking  things  down  and  using  the  pieces  and  the   energy  derived  to  build  things  the  cell  needs   o   Catabolism  –  breaks  down  larger  compounds  into  smaller  ones   and  makes  the  precursor  metabolites,  reducing  power,  and  ATP   necessary  for  anabolism   o   Anabolism  –  builds  small  molecules  into  larger  ones  using   precursor  metabolites,  reducing  power,  and  ATP.  This  is  the   production  of  new  cell  structures  after  acquiring  and  organizing   nutrients  and  energy   •   OXIDATION  VS  REDUCTION   o   These  are  the  opposite  reactions  used  to  create  power  for   oxidative  phosphorylation,  which  generates  ATP   o   Oxidation  –  losing  electrons.  The  molecule  donating  the   electrons  is  oxidized  and  is  known  as  the  reducing  agent   o   Reduction  –  gaining  electrons.  The  molecule  receiving  the   electrons  is  reduced  because  its  charge  gets  more  negative,  and   it  is  known  as  the  oxidizing  agent   •   ATP  PRODUCTION:  3  METHODS   o   Substrate  level  phosphorylation  –  phosphate  is  transferred  from   another  organic  compound  (happens  during  glycolysis)   o   Oxidative  phosphorylation  –  redox  reactions  power  attachment   of  inorganic  phosphate  to  ATP  (electron  transport  chain  within   the  membrane)   o   Photophosphorylation  –  we  don’t  talk  about  anything  besides   the  name  of  it  in  this  chapter   12     •   CELLULAR  RESPIRATION  VS  FERMENTATION   o   Cellular  respiration  –the  complete  breakdown  of  carbohydrates   as  a  source  of  carbon,  nutrition,  and  energy   o   Fermentation  –  does  not  completely  break  down  the  glucose,   but  its  still  provides  some  ATP  and  reducing  power,  just  not  as   efficiently  and  not  as  much   •   METABOLISM  STEPS   o   Membrane  transport  –  the  use  of  diffusion  or  integral  proteins   and  all  types  of  transport  to  obtain  the  substances  necessary  for   the  following  processes   o   Catabolism  –  reactions  that  break  down  the  substrate  into   precursor  metabolites,  reducing  power,  and  ATP   o   Biosynthesis  –  monomers  constructed  and  organized.  Powered   primarily  by  NADPH   o   Polymerization  –  monomers  from  pervious  step  make  polymers.   This  requires  lots  of  ATP   o   Assembly  –  polymers  are  turned  into  cell  structures   •   PRECURSOR  METABOLITES,  REDUCING  POWER,  &  ATP   o   Precursor  metabolites  –  11  molecules  used  as  the  bricks  to  build   cell  structures   o   Reducing  power  –  reserves  of  protons  (H+)  that  gives  the  cell  the   ability  to  perform  redox  reactions  to  generate  energy  molecules   o   ATP  –  molecule  that  stores  lots  of  energy   •   PROTON  GRADIENT  IN  OXIDATIVE  PHOSPHORYLATION   o   This  is  known  as  chemiosmosis:  using  a  gradient  to  form  ATP.  In   this  process,  H+  ions  are  actively  pumped  out  of  the  cell  to   create  a  gradient.  When  the  ions  flow  back  in  passively,  they   power  an  ATPase  that  generates  more  ATP   13   •   FINAL  ELECTRON  ACCEPTORS   o   Aerobic  respiration  –  oxygen  accepts  electron  and  water  is   formed  as  a  byproduct   o   Anaerobic  respiration  –  another  atom,  like  nitrogen  for  an   example,  accepts  electron.  It  has  to  be  a  particular  acceptor   depending  upon  the  enzyme  the  cell  is  equipped  with   •   WHY  FERMENTATION?   o   An  organism  may  use  fermentation  as  a  backup  when  there  is   not  an  appropriate  electron  acceptor  available   o   Some  cells  lack  a  transport  chain   14  


Buy Material

Are you sure you want to buy this material for

50 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Anthony Lee UC Santa Barbara

"I bought an awesome study guide, which helped me get an A in my Math 34B class this quarter!"

Bentley McCaw University of Florida

"I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"

Parker Thompson 500 Startups

"It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.