New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Biology 1 Exam 2 Study Guide

by: clb13m

Biology 1 Exam 2 Study Guide BSC2010

Marketplace > Florida State University > Biological Sciences > BSC2010 > Biology 1 Exam 2 Study Guide
GPA 3.8

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

Covers everything needed for the dam, including diagrams
Biological Science 1
Dr. Steven Marks
Study Guide
Biology 1
50 ?




Popular in Biological Science 1

Popular in Biological Sciences

This 11 page Study Guide was uploaded by clb13m on Monday February 15, 2016. The Study Guide belongs to BSC2010 at Florida State University taught by Dr. Steven Marks in Fall 2015. Since its upload, it has received 58 views. For similar materials see Biological Science 1 in Biological Sciences at Florida State University.


Reviews for Biology 1 Exam 2 Study Guide


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 02/15/16
Objectives for Lecture 9  Know the difference in resolution and magnification between light and electron  microscopes. o Light Microscopes: up to 1000x magnification, 0.2 micrometers resolution o Electron microscope: 1,000,000x magnification;  ~1nm resolution  Understand the process of cell fractionation based on centrifugation and know what the  purpose of cell fractionation is. o Cell fractionation allows the purification and study of cellular components  (organelles). You centrifuge for a certain period of time, the longer the time  ­ the  heavier mass separates more. Pellet on the bottom forms with cellular  debris/organelles.  Know what the differences in cell structure are between prokaryotic cells and eukaryotic  cells o Bacteria are prokaryotes. Animals, fungi, protists, and plants are eukaryotes. o Similarities: Selectively permeable plasma membrane; cytoplasm (semifluid  mixture of water and organic and inorganic compounds); chromosomes (carry  genes; made of DNA and protein); ribosomes (make proteins) o Differences: Eukaryotes have internal, membrane bound organelles – particularly a nucleus, prokaryotes do not  Know that most eukaryotic cells are between 10­100 micro meters in diameter, whereas  most prokaryotic cells are about 1 micro meters in diameter.  Know the following terms, plasma membrane, cytoplasm, nucleus, cell wall, ribosomes,  chromosomes. o Plasma membrane – membrane of lipids and proteins that forms the external  boundary of the cytoplasm of a cell or encloses a vacuole, and that regulates the  passage of molecules in and out of the cytoplasm. o Cytoplasm – fluid (water/organic/inorganic compounds) in cell o Nucleus – a dense organelle present in most eukaryotic cells, typically a single  rounded structure bounded by a double membrane, containing the genetic  material. o Cell wall – a rigid layer of polysaccharides lying outside the plasma membrane of the cells of plants, fungi, and bacteria. In the algae and higher plants, it consists  mainly of cellulose. o Ribosomes – free ribosomes (loose in cytoplasma); bound ribosomes (attached  to ER); made in nucleolus. o Chromosomes ­ DNA; chromatin is the chromosome fibers  Know the general structure and function Be able to identify each of these organelles in  photographs or drawings of cells. o Plasma membrane – is a biological membrane that separates the interior of all  cells from the outside environment. The cell membrane is selectively permeable  to ions and organic molecules and controls the movement of substances in and  out of cells. o Nucleus – double membrane; prorated by nuclear pores; ribosomes & mRNA  made in nucleolus. o Ribosomes – synthesize proteins (free or bound); get transported to other parts  of the cell by transport vesicles.  o Rough ER – ribosomes in RER make membrane proteins and proteins to be  secreted; these proteins are transported to other parts of cell by transport  vesicles; membrane factory for cell. o Smooth ER – synthesis of lipids; storage of calcium o Golgi – sorts and moves membranes and proteins made in ER; vesicle merges  and dumps sack from the ER to the golgi. The stuff in the sack gets  sorted/relocated to its correct place. o Lysosome – contain enzymes that help digest food or defective macromolecules  or organelles to recycle their components  Phagocytosis – lysosome digests food in the food vacuole that was taken into the cell  Autophagy ­ picks up organelles thats dying o Mitochondria – membrane bound organelle; have own DNA/ribosomes for  making its own proteins; transforms energy from one form to another; used for  cellular respiration o Chloroplast – membrane bound organelle; have own DNA/ribosomes for making  its own proteins; transforms energy from one form to another; used for  photosynthesis  Understand that the pathway for the flow of materials to the cell surface is from ER to the  Golgi, to Golgi vesicles, to the plasma membrane o Vesicle goes from rough ER to cis Golgi, gets transported to transexual golgi,  then is determined whether it gets transported to the lysosome, plasma  membrane, or wherever the protein inside the vesicle tells it to go (mRNA)  Know that cell shape and cellular movements are mediated by the cytoskeleton, which is  composed of microtubules (tubulin protein), microfilaments (actin protein), and  intermediate filaments (keratin protein)  Know the major structural differences between animal and plant cells. o Plant cells have central vacuoles (bag of salty fluid that increases size of cell)  with minimal cytosol increase, thylakoids (in the chloroplast), chloroplasts, and  cell walls.  o Animal cells doesn’t have any of that. Lecture 10  Be able to describe the structure of biological membranes (lipid bilayers + membrane  proteins). o The core of the cell membrane is a phospholipid bilayer (hydrophilic head,  hydrophobic tail). o There are integral membrane proteins (embedded in the phospholipid bilayer);  parts of protein that does not touch water is hydrophobic. o There are peripheral membrane proteins (attached to integral proteins); they’re  hydrophilic. o Fluidity is the ability of the phospholipids (and membrane proteins) to move. Most phospholipid movement is lateral. Membrane fluidity is affected phospholipid  composition – saturated versus unsaturated. Unsaturated means more fluidity;  saturated means more viscous. Cholesterol buffers change fluidity against  changes in temperature (keeps it more fluid even if temperature drops)  Be able to list the functions of membrane proteins  o Transport ­ moves molecules across membrane o Surface for chemical reactions – enzymes o Hormone perception ­ receptors; listens and responds , makes protein receptor  respond to hormone signals. o Cell­to­cell attachment ­ they attach  o Cell­cell recognition ­ recognizes each cell to build tissue o Attachment points of cytoskeleton and Extracellular proteins to membrane –  attaches protein to cytoskeleton and extracellular matrix (ECM)  Know that biological membranes are semipermeable (more permeable to some solutes  than others) and know how the size., polarity, and charge affects the permeability of  solutes through membranes. o Bigger substance/more charge = less permeable o Nonpolar substances move easiest = more permeable (O2 and CO2 move easily without transport proteins) o Increase in size restricts movement across membrane (needs transport proteins) o Increase in charge restricts movement across membrane (needs transport  proteins) o More polar the molecule restricts the movement across the membrane because  bilayer has hydrophobic (nonpolar) tail.  Understand the terms passive transport and diffusion, and osmosis. Be able to make  predictions about the direction that solutes or water will move if given the concentrations  of solutes across a membrane. o Passive transport – transports small molecules without the requirement of ATP;  moves substances from high to low concentration o Diffusion – moves small molecules from high to low concentration o Simple diffusion – doesn’t use transport proteins/channels/carrier proteins;  substances pass through semipermeable membrane o Facilitated diffusion – needs channels/carrier proteins o Active transport – cell uses energy to move substances o Osmosis – diffusion of water from lower solute concentration to higher solute  concentration  Be able to correctly use the terms hypotonic, isotonic and hypertonic. o Hypotonic – solute concentration outside cell is less than that inside of the cell;  cell gains water; in animal cell its lysed (Bursts); in plant cell its turgid (best state) o Isotonic – solute concentration is same as that inside cell; no net water  movement across plasma membrane; in animal cell its normal; in plant cell its  flaccid (thirsty) o Hypertonic – solute concentration is greater than that inside the cell; cell loses  water; in animal cell its shriveled; in plant cell its plasmolyzed (real thirsty) Lecture 11  Be able to explain the difference between simple diffusion and facilitated diffusion.  o Simple diffusion – movement of molecules from regions of high concentration to  regions of low concentration o Facilitated diffusion – use of channels and carrier proteins. Channels provide a  pore for movement of substances. Carrier proteins flip­flop substances across  membrane. Both proteins are highly specific and are regulated o Except for gases like O2, N2, and CO2, nearly all substances that diffuse across  cell membranes move by facilitated diffusion through channels or carriers.  Channels and carriers are highly specific for the molecules or ions they transport  and they are regulated. o Water moves through the channel aquaporin.  Understand active transport is the transport of a substance against its chemical (or  electrochemical) gradient; it requires the input of energy.  Proteins that actively transport  ions are often called ion pumps. The Sodium­Potassium pump is the main ion pump in  animal cell membranes. It pumps 3 NA+ out and 2 K+ in the cell. So the cell becomes  more negative inside. Other organisms mostly use proton pumps (H+ is pumped out).  Understand that the active pumping of ions creates both a chemical gradient of the  pumped ion and a membrane voltage (membrane potential). Most cells have a  membrane potential of about 100 mV (inside is more negative).  Understand that the electrochemical gradient of the pumped ion can be coupled to the  movement of other substances by means of cotransport. o Cotransport – uptake of sugars, amino acids, or ions, is coupled to uptake of the  pumped ion  Know what endocytosis is and what types of substances are taken up by phagocytosis,  pinocytosis, and receptor­mediated endocytosis o Exocytosis – used to transport materials out of the cell o Endocytosis – used to transport materials into the cell.  3 types: phagocytosis (larger molecules; eats)   pinocytosis (small molecules; drinks)  receptor­mediated endocytosis (vesicle is coated by receptors and only  has receptors and corresponding ligands in vesicle) Lecture 12  Be able to define metabolism and know the difference catabolism, and anabolism and  whether they consist of energy generating or consuming reactions o Metabolism is the sum total of all the chemical reactions that occur in an  organism. o Catabolism – energy generating (releases energy) by breaking down complex  molecules into simpler compounds. EXOTHERMIC Ex: Cellular respiration o Anabolism – energy consuming to build complex molecules from simpler ones.  ENDOTHERMIC Ex: photosynthesis  Know the difference between potential and kinetic energy, and know that for most  situations in biology potential energy is the energy in chemical bonds. Cleaving those  bonds releases that energy, which can be used to do work (drive a chemical reaction,  cause movement, etc.). o Potential Energy – energy that matter possesses because of its location or  structure. In biology PE is mostly in the form of chemical energy. Energy is stored in chemical bonds. o Kinetic Energy – is energy associated with motion. Heat, which is associated with the random movement of atoms or molecules, is a form of kinetic energy.  Be able to state the first and second laws of thermodynamics and understand what  entropy is o First law: energy can be transferred or transformed from one form to another, but it can’t be created or destroyed. The amount of energy in the universe is  constant. o Second law: every energy transfer or transformation increases the entropy of the  universe. o Entropy is a measure of disorder or chaos. During every energy transfer or  transformation, some energy becomes unusable, and is often lost in the form of  heat. Heat dissipates randomly in the universe, it is more chaotic than the energy in its original form, and thus increases the entropy of the universe.  Know what free energy is, how it relates to chemical reactions, what DG is, and what a  positive or a negative DG means in terms of the direction of a chemical reaction  (spontaneous vs nonspontaneous) o Free energy (G) – amount of energy that is available  to do work. Not all the  energy in a system is usable, some is entropy. o ∆G – change in free energy.  For chemical reactions, at equilibrium is 0. o If negative – there is a net release of energy the reaction occurs spontaneously..  If positive, there is a net gain of energy during the reaction then energy must be  added for the reaction to occur.  Be able to correctly use the terms exergonic and endergonic when describing a chemical  reaction. Understand how cells couple the hydrolysis of ATP to driving unfavorable  (anabolic,nonspontaneous, +DG) chemical reactions o Exergonic rxn – release energy, negative ∆G, occurs spontaneously. In general,  catabolic reactions are exergonic. o Endergonic – requires energy, positive ∆G, does not occur spontaneously. In  general, anabolic reactions are endergonic o To do work, which requires energy; cells couple these endergonic processes  (transport, chemical) to exergonic processes (mechanical). This is energy  coupling. Most energy coupling in cells is mediated by ATP. o Hydrolysis of ATP is exergonic. ∆G of ­7.3 kcal/mol. ATP + H20 = ADP + P +  Energy. o Transport work – ATP phosphorylates transport proteins o Mechanical work – ATP binds noncovalently to motor proteins, then is hydrolyzed  Understand the ATP cycle – energy from catabolic reactions (exergonic, energy­releasing processes) is used to regenerate ATP. o Cells hydrolyze ATP to ADP + P and couple the energy that is released in this  exergonic reaction to doing work. Then the ADP + P has to be converted back  into ATP, this reaction is endergonic and requires energy. Lecture 13  Know that  o Virtually all biochemical reactions are catalyzed by an enzyme. o A catalyst is an agent that increases the rate of a chemical reaction, without  being consumed by the reaction. It is reusable. Enzymes are a class of proteins  that act as catalysts.   Know what activation energy refers to and what affect enzymes have on activation  energies. Be able to interpret plots of energy changes during an enzyme reaction and  identify the activation energy and Delta Gamma o Activation energy – an energy barrier that must be overcome to start the reaction. o Enzymes don’t provide the energy to overcome the energy of activation, they  actually lower the energy of activation. Enzymes catalyze reaction. o Reactants energy higher than products energy = exergonic reaction; ∆G is  negative o Reactants energy lower than products energy = endergonic reaction; ∆G is  positive  Understand that each enzyme is highly specific for the reaction it controls.  Be able to correctly use the terms substrates and products when talking about enzyme  catalyzed reactions. o Substrate is the reactant. Product is the product. Specificity of enzyme activity is  because only the proper substrate fits into the enzyme’s active site like a key fits  into a lock.  Know what an enzyme's active site is and know the generalized catalytic cycle of  enzymes and the role of changes in enzyme shape (conformation) to the reaction it  controls o Enzyme activity can be affected by anything that alters the 3D structure of the  enzyme or the accessibility of the enzyme’s active site.  Heat and pH cause denaturation of the enzyme  Know what a cofactor is. o Cofactors are nonprotein enzyme helpers. Cofactors may be inorganic (such as  the metals zinc and iron) or organic (an organic cofactor is called a coenzyme).  Most vitamins are important in your diet because they’re coenzymes.  Know how the activity of enzymes depends on temperature and pH and be able to  explain why enzyme activity varies with changing temperature and pH. o Higher temperatures promote faster reactions, but only up to a point. Excess  heat disrupts chemical bonds that hold enzyme in its active configuration. pH is  important for enzyme structure and function. H+ concentration (pH) is needed for  ionic and hydrogen bonds of proteins secondary and tertiary structure. Main Point: Enzymes speed the rate of chemical reactions by reducing the activation energy of that reaction.  Each enzyme is specific for a certain chemical reaction. The substrate binds to a pocket on the  enzyme (active site). This results in a change in the enzymes shape and causes the substrate to  be turned into the product. The product is then released from the enzyme and the enzyme returns to its original shape and the process is repeated with a new molecule of the substrate. Lecture 14 Enzyme Regulation  Cells can control enzymatic reactions by controlling the production of the enzyme  (regulation of gene activity) and by regulating the activity of the enzyme itself.  Know what allosteric regulation of enzymes means, how enzymes are controlled by  activators and inhibitors, the difference between competitive and noncompetitive  inhibition. o Noncompetitive inhibitor – allosteric inhibitor, does not bind to the active site,  does not compete with the substrate.   Noncompetitive inhibitors are more potent because they cannot be  overpowered by an increased amount of substrate. Alters shape of  enzyme once it binds to nonactive site. o Competitive inhibitor ­ binds to the active site, competes with substrate of the  enzyme.   A competitive inhibitor can be overpowered by increasing the  concentration of the substrate. Redox Reactions:  Be able to state what a reduction is and what an oxidation is, know that: o In redox reactions electrons are transferred from less electronegative atoms to  ones that are more electronegative along with the release of energy (exergonic).  Spontaneous chemical reactions (exergonic) move toward increased oxidation  state. o Reduction – reactions in which an electron is gained o Oxidation – reaction in which an electron is lost  Know that NAD+ is a temporary electron acceptor (is reduced to NADH, which is an  electron donor) in many biological redox reactions. o NAD+ is a temporary electron acceptor (is reduced to NADH, which is an  electron donor (H+)) in many biological redox reactions. Respiration and Glycolysis  Know that in respiration glucose is oxidized to CO2 and oxygen is reduced to water and  that the energy released is used to make 32 ATPs  Know that respiration takes place in three sets of reactions (glycolysis, Krebs cycle, and  electron transport chain). o Glycolysis – cytosol o TCA – mitochondrial matrix o ETC – inner mitochondrial membrane  Be able to write the overall reaction for glycolysis and for respiration. o Glucose + 2 ADP + 2 NAD+ → 2 pyruvate + 2 ATP + 2 NADH + 2H+ o Second part of respiration:  2 pyruvate → 6CO2 + 6H2O + 30 ATP Lecture 15  Know that the pyruvate produced by glycolysis is transported into the mitochondrion,  cleaved to CO2 + acetyl CoA in a reaction generates a reduced NADH. The acetyl CoA is then attached to a 4 carbon acid (oxaloacetate) to form the 6 carbon acid (citrate).  Be able to outline the major events in the citric acid cycle (TCA cycle, Krebs cycle), you  don’t need to be able to name all the compounds or the reactions in order but you should  know that a 4 carbon acid is converted to a six carbon acid by addition of an acetyl group, then the six carbon acid is converted back into the 4 carbon acid and along the way 2  CO2s are released, and 3 NADH, one FADH, and one ATP are formed. o A 4 carbon acid is converted to a 6 carbon acid by addition of an acetyl group,  then the 6 carbon acid is converted back into the 4 carbon acid (releasing 2  CO2s, 3 NADH, 1 FADH, and 1 ATP) From original molecule of glucose (2 pyruvate = 2 acetyl CoA) yields 2 ATP, 6 NADH, 2   FADH2, 4 CO2 from  2 turns in the TCA. CO2 is only released in the conversion of the acetyl CoA (1 CO2 for each pyruvate ­ 2 CO2  released total), and in the citric acid cycle (2 CO2 for each acetyl CoA ­ 4 CO2 total) ONLY 6CO2 is released. none is released in glycolysis or electron transport chain. Lecture 16  The mechanism by which electron transport synthesizes ATP. o The NADH and FADH formed by glycolysis and the citric acid cycle transfer their  electrons to the electron transport chain, which is a series of proteins in the inner  mitochondrial membrane. These electrons are passed from one member of the  chain to the next, releasing little bits of energy along the way. Finally the  electrons are passed to oxygen (the final electron acceptor) to make water. The  energy released during electron transport is used by the electron transport  proteins to move protons from the mitochondrial matrix across the inner  mitochondrial membrane into the inter­membrane space (between inner  membrane and outer membrane). This results in a pH and electrical gradient  across the inner mitochondrial membrane. The energy in this electrochemical  gradient is used to make ATP from ADP + Pi. Protons flow through an ATP  synthase enzyme (a proton channel in the inner mitochondrial membrane) back  into the mitochondrial matrix. The energy released as the protons diffuse back  into the matrix is used by the ATP synthase to convert ADP + Pi into ATP.  Essentially what is happening is that a proton pump is being run backwards to  make ATP.  You should understand what fermentation is, what it produces, under what conditions  does it occur. Know that organisms do fermentation to regenerate NAD+ in order to keep  glycolysis running in the absence of O2. Know that the product of fermentation is ethyl  alcohol in yeast (and many bacteria) but is lactic acid in our muscle cells. o Fermentation – alternative pathway for energy production that is used when  oxygen is scarce. Purpose: to regenerate NAD+ so glycolysis can continue. 2  ATP and 2 NADH is produced. Occurs when there is no oxygen. Happens in  anaerobic organisms, facultative anaerobes, and active muscle cells. Lecture 17  Know what a photoautotroph, and a heterotroph are and which organisms fall in each  category. o Photoautotroph – self­feeders; use light energy to synthesize organic  compounds. Plants. o Heterotrophs – consumers; live on compounds produced by other organisms.  Not plants.  Be able to write an overall reaction for photosynthesis and know which molecules are  oxidized and which are reduced. Know what molecule the oxygen comes from that is  formed in photosynthesis. o Photosynthesis – the process that converts solar energy into chemical energy.  Directly or indirectly, photosynthesis nourishes almost the entire living world. It  takes place in the chloroplasts. o Water is oxidized (lose e­) ; CO2 is reduced (gain e­) o O2 comes from H20 not CO2.  Know what stomates are and what their role is in photosynthesis in land plants. o Stomates – pores on the leaf that takes in CO2 and releases O2 and water  Be able to describe the structure of a chloroplast, be able to name its parts and identify  them in a picture (inner and outer membranes, stroma, thylakoid membranes, thylakoid  space) and know which reactions take place in each compartment. o Role ­ photosynthesis occurs here nigga o Chloroplast: has stack of thylakoids, inside thylakoid is the thylakoid space,  stoma (fluid in the chloroplast), inner and outer membranes. o Light reactions on the thylakoid membranes. Energy used to split water. H+ ions  and electrons from the split of water are used to make ATP and reduced NADPH. o Calvin cycle in stroma. Energy in ATP and reducing power of NADPH used to  synthesize sugar from CO2.  Know what is formed by the light reactions and the Calvin cycle reactions, know where  each of these reactions takes place. o ATP, O2, and NADPH is formed by the light reactions, which takes place in the  thylakoid stacks o NADP, CH2O, and ADP + P is formed from calvin cycle, which takes place in the  stroma.  Understand the relationship between an absorption spectrum and an action spectrum,  know what colors (wavelengths) of light are absorbed by chlorophyll and what change  occurs in chlorophyll when it absorbs light. o Absorption spectrum – wavelengths of light absorbed by chloroplast pigments o Action spectrum – rate of photosynthesis measured in the lab (amount of O2  released) when plants exposed to visible light of specific wavelengths. o Chlorophyll A – absorbs violet­blue o Chlorophyll B – absorbs red­blue  Both reflect green o Carotenoids – absorb blue­green and violet. Reflects yellow, red, and orange   Know the role of the light harvesting complex and chlorophyll b and carotenoid pigments  in photosynthesis and know the structure of the photosystems (light harvesting complex  containing proteins and chlorophyll a, and carotenoids surrounding the reaction center,  which consists of proteins holding a chlorophyll a). o Light harvesting complexes – proteins, chlorophylls, and carotenoids AKA photosystems o Energy from light is transferred to a chlorophyll a at the reaction­center complex. This chlorophyll loses an electron to an electron transport chain. The lost electron is replaced from water.  Be able to describe the path taken by an electron during the light reactions and know where ATP is made, NADP+ is reduced and where water is split. o Electrons move from PSII through electron transport to PSI, the electrons are boosted to an even higher energy level by a second photon and that energy is used to reduce NADP+ o ATP is produced in ETC o Water is split in photosystem 2 o NAP+ is reduced in photosystem 1 with the help of NADP+ reductase   Be able to compare the reactions in respiration and photosynthesis in terms of their energetics, where the electrons for the  redox reactions come from, what compartment protons are pumped into for ATP  production, and where the electrons and protons ultimately end up. Lecture 18  Know that the Calvin cycle takes place in the stroma of the chloroplast and uses the  products of the light reactions (ATP and NADPH) to fix CO2 into carbohydrates. Know  the reaction that is catalyzed by the enzyme Rubisco (ribulose bisphosphate or RuBP +  CO2 forms 2 molecules of the 3 carbon acid 3­phosphoglycerate) and know how many  turns of the Calvin cycle are required to synthesize one glucose molecule. o The Calvin cycle takes place in the stroma of the chloroplast and uses the products of the light reactions (ATP and NADPH) to fix CO2 into carbohydrates. o The enzyme rubisco (ribulose biphosphate carboxylase) catalyzes the reaction where CO2 is joined with the 5 carbon sugar RuBP to make 2 molecules of the 3 carbon acid 3­ phosphoglycerate. o It takes 3 turns of the calvin cycle to make one net G3P and 6 turns to fix enough carbon for one glucose molecule. 9 ATP and 6 NADPH are needed to make one G3P. Therefore, 18 ATP and 12 NADPH are needed to make one glucose molecule.  Know what photorespiration is and under what conditions it occurs. o In photorespiration CO2 is released without formation of ATP or NADH and the  products of the calvin cycle are wasted.  Be able to explain the differences between C3, C4 and CAM photosynthesis and how C4  and CAM avoid the problem of photorespiration. o On hot dry sunny days 30% or more of the carbon fixed by the photosynthesis  can be lost through photorespiration in C3 Plants. C3 photosynthesis is probably  more efficient when temperatures are low and water is abundant o C4 photosynthesis avoids photorespiration – tropical grasses like corn and sugar  cane. Uses more ATP than C3 photosynthesis. o CAM photosynthesis – cacti and other succulents have this type. They open their stomates at night, fix CO2 into malic acid, close their stomates in the day, break  malic acid down to pyruvate + CO2 and run the Calvin cycle.  Be able to explain the endosymbiotic hypothesis of the origin of mitochondria and  chloroplasts and be able to provide four pieces of evidence that support this hypothesis. o Endosymbiotic hypothesis – chloroplasts and mitochondria are thought to be  descendants of bacteria taken up and adopted by host cells in two separate  events. o Evidence for the Origin of chloroplasts: 1)   Chloroplasts: arise only by division of other chloroplasts 2)   Are surrounded by a double membrane 3)   Contain DNA for making some of their own proteins 4)   DNA sequence comparisons shows chloroplasts arose from a  cyanobacterial endosymbiont (prokaryote)


Buy Material

Are you sure you want to buy this material for

50 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Bentley McCaw University of Florida

"I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"

Allison Fischer University of Alabama

"I signed up to be an Elite Notetaker with 2 of my sorority sisters this semester. We just posted our notes weekly and were each making over $600 per month. I LOVE StudySoup!"

Bentley McCaw University of Florida

"I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"


"Their 'Elite Notetakers' are making over $1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.