New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

COMPLETE HA&P II Exam 2 Lecture Objectives Study Guide

by: Victoria Hills

COMPLETE HA&P II Exam 2 Lecture Objectives Study Guide Biol 2230-001

Marketplace > Clemson University > Biology > Biol 2230-001 > COMPLETE HA P II Exam 2 Lecture Objectives Study Guide
Victoria Hills
GPA 3.8

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

Here is the complete study guide for the blood, heart, heart physiology, blood vessels, and circulation powerpoints.
Human Anatomy & Physiology II
Dr. John Cummings
Study Guide
Human, anatomy, Physiology, Clemson, Cummings, exam, 2, two, Blood, Heart, heart physiology, blood vessels, Circulation
50 ?




Popular in Human Anatomy & Physiology II

Popular in Biology

This 43 page Study Guide was uploaded by Victoria Hills on Tuesday February 16, 2016. The Study Guide belongs to Biol 2230-001 at Clemson University taught by Dr. John Cummings in Fall 2015. Since its upload, it has received 190 views. For similar materials see Human Anatomy & Physiology II in Biology at Clemson University.


Reviews for COMPLETE HA&P II Exam 2 Lecture Objectives Study Guide


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 02/16/16
Clemson University Spring 2016 Human Anatomy and Physiology II Exam 2 Lecture Objectives Blood General Information about Blood: • Blood  is  a  type  of  connective  tissue  and  it  is  the  only  liquid  tissue  in  the  body     • Cells  are  embedded  in  the  background  matrix  (liquid  portion)  of  the  blood   • Blood  is  contained  within  blood  vessels   • The  body  has  about  5  L  (Gallon  and  half)  of  blood  +  8%  of  body  weight  is   made  up  of  blood   • Blood  temperature:  About  100  degrees  F,  which  is  above  normal  body   temperature  à  Allows  heat  exchange  in  maintenance  of  body  temperature   -­‐  Ex:  Blood  can  be  shunted  from  the  surface  to  the  core  to  increase   temperature   • Blood  pH:  7.35-­‐7.45   1. List the functions of blood. • Delivers  oxygen  as  well  as  nutrients     -­‐ Ex:  Glucose  and  oxygen  are  the  2  major  components  for  cellular   respiration     • Transports  metabolic  wastes   -­‐ Ex:  In  cellular  respiration,  active  cells  produce  waste  like  carbon   dioxide  that  is  sent  back  into  the  blood  for  disposal   -­‐ Ex:  Break  down  of  proteins  through  deamination  releases 3 NH  as  a   waste  product  that  is  transported  to  the  kidneys  to  be  eliminated   through  urine   • Transports  hormones  (Chemical  messengers)  that  can  affect  cells  with   the  specific  cell  receptor   • Maintains  body  temperature     • The  pH  of  blood  is  confined  to  a  narrow  range  that  is  slightly  on  the  basic   side  of  neutral  (7.35-­‐7.45)  +  has  buffers  to  help  regulate  pH   • Because  blood  is  a  liquid  tissue,  it  is  responsible  for  maintaining  fluid   volume     -­‐ Blood  has  to  go  through  interstitial  cells  in  order  to  enter  cells  and   also  comes  back  out  of  cells  through  the  interstitial  space  to  enter   back  into  the  blood  stream  (Many  factors  affect  this)   • Components  of  the  blood  prevent  blood  loss:  Clotting  proteins/factors   à  Ex:  Damage  occurs  to  a  blood  vessel  and  the  blood  components  help   seal  off  the  blood  vessel  in  order  to  not  lose  blood     • Functions  in  preventing  infection  as  a  part  of  the  immune  system  à  Has   immune  cells,  anti-­‐bodies,  etc.     2. Describe the composition of whole blood. • Components: Formed Elements- Erythrocytes -­‐ The liquid portion of the blood contains the formed elements – These include cells, cell residue, etc. -­‐ Erythrocytes: Red blood cells that function in carrying respiratory gases (Mainly oxygen) -­‐ Red blood cells can carry carbon dioxide too, but this is not the primary method of its transport in the body -­‐ 45% of the total blood volume is made up of red blood cells -­‐ Red blood cells are not really living cells: All are produced in the bone marrow, and once the living cells reach a point where they leave the bone marrow, they no longer perform mitosis and divide and have lost the nucleus and organelles; therefore, these are considered to be dying cells -­‐ Some red blood cells last for decades and others for a few minutes • Components: Formed Elements—Leukocytes -­‐ Leukocytes are true living cells with nuclei, organelles, and the ability to reproduce -­‐ Assist in immunity along with the immune system -­‐ Less than 1% of the total blood volume is made up of white blood cells -­‐ Each type of leukocyte cell has as separate function, but together they all function for immunity • Components: Formed Elements—Platelets -­‐ Platelets  are  fragments  of  other  cells  (AKA  thrombocytes)  à  Includes   pieces  of  plasma  membranes  and  cytoplasm  that  have  been  pinched   off  of  other  cells   -­‐ Within  platelets,  there  are  vesicles  that  contain  proteins  that  are   involved  in  blood  clotting   -­‐ Leukocytes  and  platelets  combined  make  up  less  than  1%  of  the  total   blood  volume   • Components: Plasma -­‐ Liquid portion of the blood -­‐ Plasma makes up 55% of the blood volume -­‐ Hematocrit (Diagnostic Test): o Used  to  observe  the  different  proportions  of  the  components   (Erythrocytes,  leukocytes,  platelets,  and  plasma)  in  the  blood   o  Have  a  capillary  tube  that  draws  blood  up  from  a  pricked  finger  that   is  put  into  clay,  has  one  end  plugged  and  centrifuged  so  the  blood   separates  into  its  different  components       o Results:  Slightly  less  than  half  =  red  blood  cells,  slightly  more  than  half   =  plasma,  and  the  green  color  (In  picture)  =  white  blood  cells  and   platelets  combined   o Used  to  determine  anemia,  sufficiency  of  blood  cells,  and  excess  blood   cells   • Composition of Plasma -­‐ The plasma is 90% water -­‐ Contains other substances in solution (Many are proteins + non-proteins) o Albumin:  Most  common  in  blood  (Produced  by  the  liver)   o Globulins:  Immune  proteins  (Ex:  Gamma  globulins)   o Enzymes   o AA  Based  Hormones   -­‐ Non-­‐proteins:   o Nitrogenous  waste   o Nutrients  such  as  glucose  +  others  that  are  transported  throughout   the  body   o Electrolytes:  Charged  ions  such  as  calcium  and  sodium   o Respiratory  gases  (Some  are  transported  through  red  blood  cells  and   others  through  the  plasma—liquid  portion  of  blood)   3. Describe the structure, function and production of erythrocytes. • Red  blood  cells  are  small,  biconcave  cell  remnants  that  do  not  have  a   nucleus  or  organelles     • The  purpose  for  the  loss  of  the  nucleus  and  organelles  is  so  that  a  pigment   protein  called  hemoglobin  could  be  fit  inside  the  structure  in  order  to  be   able  to  carry  oxygen     • Red  blood  cells  also  contain  antioxidant  enzymes  that  eliminate  free   radicals  (Excess  hydrogen  ions  that  have  escaped  and  become  toxic  to  the   body)     • On  average  there  are  about  5  million  red  blood  cells/mL  of  blood   between  men  and  women     • Men  have  a  higher  amount  of  red  blood  cells  though  (5.1-­‐5.8  million)  and   females  have  (4.3-­‐5.2  million)   • Erythropoiesis -­‐ Hematopoiesis: Means “production of blood cells” o Erythropoiesis (Production of red blood cells) and leucopoiesis (Production of white blood cells) are types type of hematopoiesis o An  ounce  of  blood  is  produced  a  day  and  will  contain  100  billion  cells   o The  types  of  blood  cells  produced  depends  on  the  needs  of  the  body     o Ex:  When  exercising,  more  oxygen  is  needed  so  red  blood  cells  are   produced  more   o Ex:  Stress  causes  body  to  catch  a  cold  so  more  white  blood  cells  are   needed   o All  hematopoiesis  occurs  in  the  bone  marrow   o In  the  bone  marrow,  there  is  a  hemocytoblast  (Hematopoietic  stem   cell)=  Pluri  potent  cell  that  can  give  rise  to  a  number  of  different  cells   and  not  just  one  type  (Red  or  white  blood  cells)   -­‐ Erythropoiesis  Steps:  Process  takes  3-­‐5  days  to  complete   o Hemocytoblast  produces  a  myeloid  stem  cell,  which  is  also  a  pluri   potent  cell  (Can  produce  red  or  white  blood  cells)   o Myeloid  stem  cell  à  proerythroblast  à  early  erythroblast  à  late   erythroblast  à  normoblast   o Normoblast  loses  its  nucleus  and  organelles,  and  it  accumulates   hemoglobin  molecules  and  becomes  a  reticulocyte   o The  reticulocyte  leaves  the  bone  marrow  and  matures  in  the  blood   stream  (NOT  the  bone  marrow)  to  become  a  fully  functional   erythrocyte     -­‐ Regulation of Erythropoiesis o Erythropoietin: Produced in the kidney § Kidneys  asses  the  level  of  oxygen  in  the  blood     § When  it  is  detected  that  there  is  a  need  for  more  oxygen,   erythropoietin  is  released  and  signals  the  bone  marrow  to  make   more  red  blood  cells   § *Red  blood  cell  formation  is  based  on  oxygen  concentration  and   NOT  the  number  of  red  blood  cells     o Testosterone:     § Stimulates  the  kidneys  to  release  erythropoietin     § Males  have  higher  levels  of  testosterone  than  females  à  Why   males  have  more  red  blood  cells  à  More  iron  in  the  body,  which   has  shown  a  link  to  heart  disease   § There  is  evidence  that  males  donating  blood  4  times  per  year  helps   reduce  risk  of  heart  disease  (Applies  for  females  after  menopause   as  well—before  blood  is  lost  through  menstruation)   o Iron:     § If  there  isn’t  iron  present,  hemoglobin  cannot  be  produced  to  carry   the  oxygen     § Body  compensates  by  storing  iron  (From  diet)  in  the  forms  of   ferritin  and  hemosiderin     § When  the  body  transports  iron  to  the  bone  marrow  for  red  blood   cell  formation,  it  is  transported  in  the  transferrin  form     § Red  blood  cells  are  essentially  dead  cells,  and  when  they  are   broken  down,  the  body  attempts  to  salvage  the  iron  by  converting   it  back  to  transferrin  to  transfer  to  the  liver  to  reconvert  in  the   storage  form  of  hemosiderin  to  be  recycle     § Overall:  Iron  is  needed  to  make  hemoglobin,  and  hemoglobin  is   needed  to  make  red  blood  cells   o B  vitamins:  Especially  B12  and  Folic  Acid   § When  a  female  becomes  pregnant,  she  consumes  a  daily  prenatal   vitamin  that  has  many  B  vitamins  to  make  sure  there  is  enough   oxygen  being  produced  for  her  and  the  baby   o Dietary  nutrients:   § Enough  dietary  nutrients  is  needed  to  be  able  to  create  the  red   blood  cells  in  the  first  place   § Includes  proteins,  lipids,  and  carbohydrates  that  are  all  necessary   to  make  the  plasma  membrane  and  organelles  (In  the  bone   marrow)   § Overall:  Dietary  and  chemical  signals  are  all  a  part  of  the   erythropoiesis  process   • Erythrocyte Longevity -­‐ Erythrocytes  last  on  average  for  about  4  months   -­‐ Old  ones  are  phagocytized  by  macrophages  à  Heme  is  split  off  the   globin  as  a  result  and  is  transported  to  the  liver  to  be  re  converted   and  stored  as  hemosiderin  and  ferritin  that  is  bound  to  proteins   -­‐ The  hemoglobin  molecule  is  converted  to  bilirubin  that  is  picked  up   by  the  liver  and  converted  into  bile     -­‐ Bile  aids  in  digestion  of  lipids  and  is  constantly  being  produced  by  the   liver  but  can  be  stored  in  the  gallbladder  when  it’s  not  needed     -­‐ Some  of  the  breakdown  of  bilirubin  (Pigment  portion)  is  expelled  in   feces  and  turns  the  color  brown     -­‐ Some  of  the  globin  is  broken  down  to  amino  acid  constituents  that  are   put  into  storage  to  later  be  used  to  rebuild  other  proteins   -­‐ Overall:  The  erythrocyte  is  recycled  as  much  as  possible,  but  it  still   loses  some  components  in  general     4. Describe the chemical make-up of hemoglobin. • Hemoglobin o Hemoglobin  is  a  combination  of  globin  (Protein)  and  heme  (pigment)   o Heme  pigment  makes  our  blood  red  (With  or  without  oxygen  attached   to  the  heme)   o Globin  protein  bound  to  heme  pigment  =  hemoglobin   • Globin o Globin is complex protein with 4 subunits (4 polypeptide chains linked together) à Means this has quaternary structure because there is more than one subunit o Of the 4 subunits, there are 2 alpha and 2 beta that are all linked together o Each of the 4 globin subunits attaches to a heme • Heme -­‐ Heme pigment contains iron that is attracted to oxygen (oxygen binding iron) • Hemoglobulin -­‐ The  center  core  of  each  subunit  is  the  heme  that  binds  to  one   molecule  of  oxygen  so  that  it  carries  a  total  of  4  molecules  of  oxygen   -­‐ There  are  250  million  hemoglobulin  molecules  in  an  individual  red   blood  cell  so  that  each  one  carries  1  billion  oxygen  molecules   -­‐ Oxygen  plays  an  important  role  with  the  oxidation  of  glucose  and   obtaining  energy  (All  active  cells  require  a  lot  of  energy  so  the  5   million  red  blood  cells/mL  of  blood  is  really  helping  out)   • Oxi- vs. Deoxyhemoglobulin -­‐ Oxygen dissociation curve -­‐ Oxihemoglobin (Deep scarlet red): When oxygen is bound to hemoglobin o Deoxyhemoglobin  (Purplish-­‐red):  When  there  is  no  oxygen  bound   to  hemoglobulin   o Hemoglobin  is  a  carrier  molecule  that  picks  up  oxygen  where   levels  are  high  in  the  lungs  and  releases  it  in  places  where  oxygen   is  low  in  active  cells   o Have  an  S-­‐shaped  curve  (NOT  linear)  à  Tells  us  that   deoxyhemoglobulin  starts  to  pick  up  oxygen  and  this  changes  the   affinity  for  oxygen  –  Means  that  once  hemoglobulin  has  the  first   oxygen  bound,  it  is  able  to  bind  to  more  oxygen  more  quickly  and   the  molecule  does  not  like  to  give  the  oxygen  up   o Overall,  deoxyhemoglobulin  progresses  to  oxyhemoglobulin  based   on  concentration  gradients  and  affinity  for  oxygen       • Carbaminohemoglobulin -­‐ Carbaminohemoglobulin  means  that  the  globulin  part  is  bound  to   carbon  dioxide   -­‐ Hemoglobulin  is  able  to  transport  only  about  20%  of  carbon  dioxide   as  a  result;  The  rest  is  carried  in  the  plasma   -­‐ Plasma  is  made  up  of  90%  water,  so  when  carbon  dioxide  enters  the   water  it’s  transfored  into  carbonic  acid  à  dissociates  to  form   bicarbonate  (HCO ), 3which  is  the  form  in  which  carbon  dioxide  is   transported  in  throughout  the  body     5. Define diapedesis. • Greek:  dia;  pedan-­‐  Means  “to  go  through,  leap”   • Ability  for  a  blood  cell  to  the  leave  the  blood  vessels  in  the  passing  of   circulation   • Red  blood  cells  are  incapable  of  diapedesis—They  stay  in  circulation   • Some  white  blood  cells  are  able  to  diapedese  (Monocytes)   6. List the classes, structural characteristics and functions of leukocytes. • Leukocytes -­‐ Complete cells with nuclei and organelles -­‐ Display positive chemotaxis: Release chemicals in an area so that other white blood cells will migrate towards that area—attraction to an area (Pass through circulation) -­‐ White blood cells make up < 1% of total blood volume à 4,800 -10,800 WBC/uL of blood • Leukocytes -­‐ 2 Types: a) Granulocytes:  Contain  granules  in  vesicles   1. Neutrophils:   o Most  common  of  all  white  blood  cells  (Account  for  50-­‐70%  of   white  blood  cell  population)   o Multilobed  nucleus  (Key  characteristic)     o Contain  granules   o Phagocytic  cells   o Function  during  inflammatory  response—Part  of  the  immune   response  in  tissue  repair  and  inflammation     2. Eosinophils:   o Make  up  2-­‐4%  of  all  white  blood  cells   o 2  lobed  nucleus—Often  looks  U-­‐shaped     o Contain  enzymes  in  their  granules  that  digest  parasitic  worms     3. Basophils:   o Make  up  0.5-­‐1%  of  all  white  blood  cells   o Contain  histamines  in  their  granules  that  1)  Dilate  blood  vessels  so   that  more  blood  is  delivered  to  specific  spot  2)  Promotes  the   attraction  of  other  white  blood  cells  to  that  area     b) Agranulocytes:  Don’t  have  granules   1. Lymphocytes:   o Second  most  numerous  white  blood  cells  (Account  for  25%)   o Most  of  the  cell  is  made  up  of  the  nucleus   o Major  immune  cell:  Includes  T-­‐lymphocytes  (Attack  viruses  and   tumors)  and  B-­‐lymphocytes  (Attack  bacteria  and  produce   antibodies)   o Predominantly  found  in  the  lymphoid  tissue   2. Monocytes:   o Make  up  3-­‐8%  of  all  white  blood  cells   o Have  a  U-­‐shaped  nucleus     o Largest  in  size  of  white  blood  cells     o Phagocytic  cells   o Able  to  diapedese:  Can  leave  circulation  to  differentiate  into  highly   mobile  macrophages  (Phagocytic  +  activate  lymphocytes  to  mount   the  immune  response)   7. Describe leucopoiesis. • Leukopoiesis -­‐ Hemocytoblasts (Stem cell in the bone marrow) give rise to myeloid stem cells (Produce all other formed elements) and lymphoid stem cells (Produce lymphocytes) • Granulocyte Leukopoiesis -­‐ Hemocytoblasts à myeloid stem cells à myeloblasts (Committed cell that can only become a granulocyte at this point) -­‐ Myeloblasts accumulate lysosomes (Granules) to become promyelocytes that differentiate into myelocytes -­‐ Cell division stops here at the myelocyte stage so that nuclei start to arch to form band cells à Nuclei constrict and segment so that the myelocyte (Do have accumulated granules) becomes a mature granulocyte • Agranulocyte Leukopoiesis: Monocytes -­‐ Hemocytoblasts  à  myeloid  stem  cells  à  monoblasts  (Committed   cell  that  can  only  become  an  agranulocyte  at  this  point)à   promonocytes   -­‐ Promonocytes  leave  the  bone  marrow  to  become  monocytes  in   lymph  tissues  (Can  last  for  months)   • Agranulocyte Leukopoiesis- Lymphocytes -­‐ Hemocytoblasts à lymphoid stem cells (Committed cell that produces agranulocyte-lymphocytes) à lymphoblasts à prolymphocytes -­‐ Prolymphoctes leave the bone marrow and become mature lymphocytes in the lymph tissue -­‐ Specifically: T and B lymphocytes comes from lymphoid stem cells • Regulation of Leukopoiesis -­‐ Interleukinsà Accumulation stimulates luekopoiesis in the bone marrow -­‐ Colony-Stimulating Factors (CSF’s) à Accumulation stimulate leucopoiesis in the bone marrow 8. Describe the structure, function and formation of platelets. • Platelets -­‐ Anucleated  cytoplasmic  fragments  of  megakaryocytes  à  Does  not   contain  organelles  either  and  are  essentially  chunks  of  pinched  off   cytoplasm  +  granules   -­‐ Granules  contain  clotting  chemicals     -­‐ Role  of  platelets  is  to  cause  blood  clotting     • Thrombopoiesis -­‐ Old name for platelets = thrombocytes -­‐ Hemocytoblasts à myeloid stem cells à megakaryoblasts (Committed cell) -­‐ Megakaryoblasts undergo repeated mitosis but no cytokinesis to form megakaryocytes where its cytoplasmic extensions break off to be platelets • Regulation of Thrombopoiesis -­‐ Thrombopoietin:   oHormone  that  stimulates  platelet  formation  in  the  bone  marrow  when   they’re  needed  by  the  body     9. Give examples of disorders caused by abnormalities of each of the formed elements. • Erythrocyte Disorders -­‐ Anemias: o In  terms  of  any  time  the  blood  has  a  low  oxygen  carrying  ability     o Insufficient  numbers  of  red  blood  cells—Can’t  carry  enough  oxygen   o Have  irregularly  shaped  red  blood  cells  like  in  sickle  cell  anemia  that   have  a  crescent  moon  shape—Can’t  properly  hold  oxygen   -­‐ Polycythemia:   o Too  many  red  blood  cells  packing  blood  vessels   o Leads  to  inability  to  push  through  blood  vessels  and  makes  the   blood  sludge-­‐like  and  incapable  of  delivering  oxygen  to  any  tissues   • Leukocyte Disorders -­‐ Leukemia: o Cancer  of  white  blood  cells     o Abnormal  cell  division   -­‐ Infectious  mononucleosis:   o White  blood  cell  disorder  that  is  in  response  to  an  infection  from   the  Epstein-­‐Barr  virus   o Epstein-­‐Barr  virus  causes  can  increase  in  the  production  of   agranulocytes  (Excessive  amounts)     -­‐ Leukopenia:   oDeficiency  in  the  number  of  white  blood  cells   10. Describe the process of hemostasis, differentiating the intrinsic pathway from the extrinsic pathway. • Hemostasis -­‐ Hemostasis  =  prevent  blood  loss  =  function  of  platelets   -­‐ Blood  is  a  fluid  tissue  that  is  contained  within  blood  vessels  all  the   time     -­‐ Few  cells  that  are  able  to  move  out  of  circulation  and  pass  across  the   wall  of  blood  vessels  =  diapedesis;  Most  blood  cells  can’t  do  this   -­‐ Damage  to  blood  vessels  would  result  in  blood  loss  so  this  is  where   hemostasis  comes  into  play   -­‐ 3  Major  Steps  of  Hemostasis:   a) Vascular  spasm:   o When  the  blood  vessel  is  damaged  and  is  cut/open,  the  blood   vessel  immediately  constricts   o Constriction  of  the  blood  vessels  slows  down  the  passage  of  blood   and  therefore  the  loss  of  blood     b) Platelet  plug  formation:   o Platelets  will  collect  at  the  site  of  damage     o There  is  a  chemical  signal  that  causes  the  platelets  to  stay  where   there  is  constriction  of  the  blood  vessel  as  it  still  bleeds   c) Coagulation:   o Blood  clotting  occurs  and  there  is  coagulation   o Damage  to  the  blood  vessel  is  plugged  with  a  blood  clot  to  prevent   the  loss  of  blood,  and  this  stimulates  the  repair  of  the  blood  vessel   o The  blood  vessel  will  grow  back  together  as  a  result  and  become   an  integral  unit  again     • Platelet Plug Formation -­‐ Blood  vessel  has  to  be  damaged  for  there  to  be  an  accumulation  of   platelets   -­‐ When  there  is  damage  to  a  blood  vessel,  underlying  connective  tissue,   specifically  collagen  fibers,  are  exposed  to  the  blood     -­‐ Also,  damage  to  a  blood  vessel  causes  the  accumulation  of  2  chemicals   that  cause  platelets  passing  by  to  stick  at  the  site  of  damage  (Stick  to   the  collagen  fibers):   a) von  Willebrand  Factor:  Plasma  protein  that’s  already  in  the  blood,   but  as  blood  passes  by  the  damaged  vessel  this  protein  will   accumulate  due  to  the  exposure  of  the  collagen  fibers   b) The  damaged  blood  vessel  itself  releases  thromboxane  A =   2   prostaglandin  (A  paracrine  =  local  signaling  molecule)  that   accumulates  at  the  damaged  site   -­‐ Once  the  platelets  are  attached  to  the  site  of  damage  due  to  von   Willebrand  factor  and  thromboxane  A ,  thrombin  ac2ivates  platelets   to  break  down  and  release  their  contents  from  their  granules  (Clotting   factors)   -­‐ Important  to  not  plug  the  whole  blood  vessel  as  it’s  being  repaired  or   else  blood  won’t  be  able  to  pass  through     • Intrinsic  Pathway  to  Coagulation  (First  way  involving  action  of   platelets)   -­‐ After  the  platelets  form,  coagulation  follows  =  gelling  of  blood  at  the   site  of  damage  (A  very  complex  process)   -­‐ Coagulation  involves  a  series  of  reactions  in  which  clotting  factors  are   converted  to  active  forms     -­‐ Ultimately  aggregated  platelets  are  stimulated  to  dump  their  contents   from  their  granules  (clotting  factors)  to  lead  to  coagulation  and   release  PF  3   -­‐ PF ac3  es  a  bunch  of  intermediates  (10  steps  Not  discussed  here),   which  results  in  the  activation  of  factor  X   -­‐ Once  factor  X  is  activated,  it  combines  with  calcium,  PF  and  f3ctor  V   to  form  prothrombin  activator   -­‐ Prothrombin  activator  activates  prothrombin  and  catalyzes  the   conversion  of  prothrombin  (Inactive  form)  to  thrombin  (Active  form)   -­‐ Thrombin  catalyzes  the  polymerization  of  fibrinogen  into  fibrin   (Active  form)  that  surrounds  the  accumulated  platelets  like  a  hairnet   to  hold  everything  together  in  place   -­‐ Thrombin  also  activates  factor  XIII,  which  links  fibrin  strands  together   and  makes  a  mesh     -­‐ *There  are  13  clotting  factors  in  total     • Extrinsic Pathway to Coagulation -­‐ Extrinsic  pathway  aids  the  intrinsic  pathway  in  making  the  blood  clot   -­‐ The  extrinsic  pathway  is  a  short  cut  that  skips  some  intermediate   steps  so  that  instead  of  relying  on  the  platelets  to  release  their   contents  of  clotting  factors  from  their  granules,  the  damaged  cells  of   the  blood  vessel  release  chemicals   -­‐ These  chemicals  =  tissue  factor  (That  is  in  addition  to  the  thrombxoin   A  being  released),  which  interacts  with  PF  to  allow  a  short  cut  to   2 3 factor  X  activation)   -­‐ Tissue  factor  helps  the  coagulation  process  and  speeds  it  along,  but   it’s  important  to  note  that  it  won’t  do  this  alone  because  PF  comes3   from   11. List factors that limit clot formation. • Limitations to Platelet Plug -­‐ Intact endothelial cells secrete PGI (prostacyclin)=2A prostaglandin that prevents platelets from sticking to where it is secreted on healthy cells -­‐ Heparin is also secreted by healthy intact endothelial cells that prevent platelet attachment -­‐ Vitamin E quinone: Vitamin E is a blood thinner that prevents platelets from adhering -­‐ Essentially, the body regulates where a clot is needed and where it isn’t needed efficiently • Clot Limiting Factors -­‐ Clotting  factors  are  released  by  platelets  that  cause  the  clot  to   accumulate  but  with  blood  still  flowing  through  the  damaged  blood   vessel,  some  of  the  chemicals  are  transported  away  and  diluted  so   that  they  aren’t  having  an  effect  on  the  clot  itself  in  order  to  make  sure   that  the  clot  doesn’t  get  too  big   -­‐ Antithrombin  III  inactivates  thrombin,  which  in  turn  slows  down  the   clotting  process   -­‐ Protein  C  inhibits  the  intermediate  steps  in  the  activation  of  factor  X   in  the  intrinsic  pathway  events  (Caused  by  platelets)   -­‐ Heparin:  Produced  by  intact  endothelial  cells  that  enhances   antithrombin  III  and  inhibits  the  intrinsic  pathway  events  in  order  to   keep  the  clot  from  getting  too  big   12. Explain how the processes of retraction and fibrinolysis relate to the natural elimination of a blood clot. • Clot Retraction -­‐ As  the  blood  vessel  is  repairing  itself,  it  is  necessary  to  break  down   the  clot  slowly  so  it  is  not  released  all  at  one   -­‐ Platelets  contained  within  their  granules  have  proteins  involved  with   retraction  (Contractile  proteins)     -­‐ The  contractile  proteins  pull  to  contract,  and  as  they  contract,  they   cause  the  platelets  to  contract  and  squeeze  out  serum  out  of  the  blood   clot  so  that  it  becomes  harder,  denser,  and  smaller   -­‐ As  the  blood  vessel  starts  to  contract,  it  pulls  the  two  edges  of  the   blood  vessel  together  to  have  tissue  repair   -­‐ PDGF  (Platelet  Derive  Growth  Factor)  is  released  by  the  platelets  as   they  start  to  break  down  and  stimulates  healing  of  the  blood  vessel  by   stimulating  cell  divisionà  Granulation  tissue  forms  and  there  is   regeneration  of  the  tissue  so  that  the  epithelium  and  connective  tissue   are  in  tact     o Another  way  of  explaining:  As  platelets  start  to  breakdown  and  the   clot  is  shrinking,  platelets  release  PDGF  chemical  that  tells   neighboring  cells  to  start  dividing  so  that  the  blood  vessel  repairs   itself   -­‐ With  the  blood  vessel  fixed,  the  clot  is  even  smaller  and  still  needs  to   be  broken  up  (Don’t  want  to  release  it  at  one  time)   • Fibrinolysis -­‐ Fibrinolysis:  Process  of  breaking  down  fibrin—Clot  is  broken  apart  as   a  result  of  the  blood  vessel  being  healed   -­‐ Fibrin  mesh  must  be  broken  up  slowly  so  that  small  pieces  are   released  into  circulation  and  can  be  phagocytized,  otherwise  the   whole  rest  of  the  clot  could  lodge  into  blood  vessels  of  the  lungs  or   brain  and  cause  death   -­‐ New  endothelial  cells  produce  plasminogen  activator  (AKA  TPA),   which  activates  plasminogen  that  is  released  by  the  clot   -­‐ The  clot  produces  plasminogen  that  is  activated  to  plasmin  due  to  the   new  endothelial  cells  that  were  produced  during  blood  vessel  repair     -­‐ Plasmin  digests  the  fiber   13. Identify the hemostatic disorders. • Thromboembolytic  Disorders:  Excessive  blood  clot  production   -­‐ Thrombus:     o Forms  a  blood  clot  in  healthy  blood  vessels   o Stationary  à  it  blocks  the  flow  of  blood   o This  can  become  an  issue  with  long-­‐distance  plane  flights   where  people  don’t  move  their  legs  frequently   • Embolism:     -­‐ Blood  clot  that  moves  through  the  body  and  it  ultimately  finds  an  area   that  it  can’t  pass  through  à  clog  up     -­‐ Bleeding  Disorders:  Insufficient  blood  clot  production   • Thrombocytopenia:     -­‐ Insufficient  amount  of  platelets  in  the  body     -­‐ Reduction  of  platelets  due  to  disease/pathology  such  as  an  infection   • Hemophilia:     -­‐ Genetic  disorder  that  causes  excessive  bleeding     -­‐  Individual  isn’t  able  to  produce  one  of  the  clotting  proteins  since   he/she  doesn’t  have  a  gene  for  the  protein  so  blood  clot  can’t  be   produced     -­‐ Can  apply  for  any  of  the  13  clotting  factor  proteins  but  can  be  an  extra   problem  with  some  of  the  more  important  ones  that  were  discussed   14. Describe the ABO and Rh blood groups (Human Blood typing). • Determined  by  the  presence  of  agglutinogens  =  ABO  and  Rh  (D)   • Agglutinogen:  Some  people  refer  to  them  as  antigens,  but  antigens   actually  are  a  marker  that  stimulate  the  immune  system  to  attack  it       • Agglutinogens  would  human  blood  typing  are  found  on  the  surface  of  red   blood  cells   • A  agglutinogen  on  a  red  blood  cell  =  Blood  type  A   • B  aggultinogen  on  a  red  blood  cell  =  Blood  type  B   • A  and  B  agglutinogens  on  a  red  blood  cell  =  Blood  type  AB   • Neither  A  or  B  agglutinogens  on  a  red  blood  cell  =  Blood  type  O     • Rh  factor  =  AKA  D  agglutinogen     • Ex:  If  have  A  agglutinogen  +  Rh  (D)  agglutinogen  =  A+   • If  the  Rh  (D)  is  not  present  on  the  surface  of  the  red  blood  cell,  then  there   is  a  “—“  after  the  A,  B,  AB,  or  O  blood  type     • All  3  agglutinogens  present  on  the  surface  of  a  red  blood  cell  =  AB+     • Agglutinogens  (Markers)  on  red  blood  cells  determine  agglutinins  à     -­‐ Blood  type  A  produces  anti-­‐B  agglutinins,  which  attacks  cells  with  the  B   agglutinogen  (Why  blood  type  B  cannot  be  donated  and  mixed  with  blood   type  A)   -­‐ Blood  type  B  produces  anti-­‐A  agglutinins,  which  attacks  cells  with  the  A   agglutinogen  (Why  blood  type  A  cannot  be  donated  and  mixed  with  blood   type  B)   -­‐ Blood  type  AB  produces  neither  anti-­‐A  agglutinins  or  anti-­‐B  agglutinins   (Universal  recipient)   -­‐ Blood  type  O  produces  anti-­‐A  agglutinins  and  anti-­‐B  agglutinins  (Can  only   accept  O  blood  type)   • Individual  with  blood  type  O  -­‐  =  universal  donor  because  it  has  absolutely   no  agglutinogens  so  any  blood  type  has  nothing  to  attack     • Re-­‐emphasis:  Individual  with  blood  type  AB+  is  the  universal  recipient   because  it  doesn’t  produce  any  agglutinins  (Won’t  reject  any  blood  type)   • Hemolytic  Disease  of  Newborn  or  Erythroblastosis    Fetalis:   -­‐ If  a  female  is  Rh  (D)-­‐  and  she  gets  pregnant  with  a  baby  that  is  Rh  (D)+  =   male  is  Rh  (D)+  then  the  first  baby  is  ok     -­‐ Rh  (D)+  accumulates  as  a  result  in  the  mother   -­‐ The  second  baby  is  not  ok  because  as  soon  as  it  is  born,  its  blood   coagulates  so  that  it  dies  shortly  after  birth   -­‐ Important  for  mother  with  Rh  (D)-­‐  to  receive  a  shot  of  rhogam,  which   suppresses  production  of  anti  RH  (D)  agglutinins  (Often  times  given  to   mother  regardless  of  blood  type)   The Heart 1. Describe the location and orientation of the heart. • Heart  is  about  the  size  of  a  fist  à  Make  fist  with  hand  and  put  at  the   center  of  chest  à  Oriented  at  an  angle  and  is  located  in  the  mediastinum   cavity   • Base  of  the  heart  =  Top     • Apex  of  the  heart  =  Bottom   • This  is  because  embryologically  speaking  the  heart  is  right  side  up  so  that   the  apex  is  at  the  top  but  during  the  developmental  process,  there  is  d-­‐ looping  so  that  it  turns  upside  down   2. Name the coverings of the heart. • The  heart  is  covered  by  a  sac-­‐like  structure  =  pericardium  that  has  2   parts:   a) Fibrous  pericardium:     -­‐ Outer  most  part  (most  superficial)  that  is  made  of  dense  connective   tissue  that  protects  it   b) Serous  pericardium:     -­‐ 2  layered  sac  that  contains  the  parietal  layer  (belongs  to  the  cavity)   and  the  visceral  layer  (belongs  to  the  organ)   -­‐ The  visceral  layer  is  the  outer  most  layer  of  the  heart  itself  =   epicardium   -­‐ In  between  the  parietal  and  visceral  layers  is  the  pericardial  cavity   which  is  filled  with  pericardial  fluid  that  protects  the  heart  by   preventing  friction  when  it  beats  +  help  dissipate  heat  so  that  the   heart  muscle  doesn’t  fatigue   3. Describe the structure and the function of the three layers of the heart. • Epicardium:  Outer-­‐most  layer  of  the  heart  =  visceral  layer  of  the  serous   pericardium     • Cardiac  muscle:  Myocardium     • Endocardium:  Lining  of  the  heart;  Squamous  epithelial  tissue  with  a  little   connective  tissue  underneath  it     *Squamous  epithelial  tissue  lines  all  the  blood  vessels  in  the  body       4. List the chambers and anatomical landmarks of the heart. • The  human  heart  is  divided  into  4  chambers  à  2  atria  are  located  at  the   base  (Top)  and  2  ventricles  are  located  at  the  apex  (Bottom)  and  they  are   all  separated  from  each  other   • The  left  ventricle  has  a  thicker  myocardium  in  its  ventricular  wall   because  it  has  to  send  blood  throughout  the  entire  body     • The  right  ventricle  only  sends  blood  to  the  lungs  so  not  as  much  force  is   required   • All  4  chambers  of  the  atria  and  ventricles  are  separated   • The  2  atria  are  separated  by  interatrial  septum     • Before  birth,  the  blood  enters  the  baby’s  right  atrium  and  short-­‐cuts  to   the  left  atrium  since  the  blood  doesn’t  have  to  go  to  the  lungs  for  oxygen   because  it’s  not  breathing   • After  birth,  the  little  hole  between  the  2  atria  is  officially  and  completely   closed  as  the  baby  takes  its  first  breath  and  then  the  interatrial  septum  is   present   • The  2  ventricles  are  separated  by  the  interventricular  septum   -­‐ On  top  of  the  interventricular  septum,  there  is  a  groove  where  there   are  the  coronary  arteries  and  veins  that  supply  blood  to  the  heart   muscle  that  are  protected  by  a  lot  of  fat     • On  the  outside  of  the  heart,  there  are  special  markings  that  can  indicate   whether  or  not  the  front  or  back  is  being  looked  at:   -­‐ Coronary  sulcus:  Runs  down  at  a  diagonal  on  the  front  of  the  heart   -­‐ Interventricular  Groove:  On  the  back  of  the  heart,  this  groove  runs   straight  up  and  down  the  heart   5. Describe the structure and composition of the heart chambers. • Atria: Auricles -­‐ Atria  hold  blood   -­‐ Auricles:  Looks  like  an  ear  flap  that  is  found  inside  the  atria  and  it   creates  an  extension  to  increase  the  surface  area  for  the  atrium  to  be   able  to  hold  more  blood   • Atria: Pectinate Muscles -­‐ Located  on  the  upper  surface  of  the  atria,  there  are  bands  of  muscle   fibers  =  pectinate  muscles     -­‐ Pectinate  muscles  help  the  atria  to  contract  and  push  blood  into  the   ventricles   • Atria: Fossa ovais -­‐ The  fossa  ovais  is  the  opening  in  the  embryo  where  blood  shortcuts   from  the  right  to  left  atrium     -­‐ The  fossa  ovais  closes  immediately  when  the  baby  takes  its  first   breath  after  being  born  à  The  blood  has  to  go  from  the  right  atrium   to  the  right  ventricle  in  order  to  go  to  the  lungs  and  come  back  to  be   pumped  to  the  rest  of  the  body   • Ventricles: Trabeculae carneae -­‐ Trabeculae  carneae:  Muscle  bundles  that  make  up  the  walls  of  the   ventricles;  Extend  into  the  ventricles   • Ventricles: Papillary muscles -­‐ Papillary  muscles:  Extend  off  the  walls  of  the  ventricles  that  are   connected  to  the  caps  of  the  valves  of  the  heart   -­‐ Contract  to  tense  the  right  and  left  atrioventricular  valves  via  the   chordae  tendineae  just  before  ventricular  systole   6. Trace the pathway of blood flow through the heart, including the major blood vessels. • All  blood  from  the  blood  enters  the  right  atrium  (NOT  the  lungs)  via  the   vena  cava   • 2  parts  of  the  vena  cava:   1) Superior  vena  cava:  Blood  from  the  head  (Above  the  heart)   2) Inferior  vena  cava:  Blood  from  below  the  heart   • Coronary Sinus: -­‐ Coronary arteries and veins feed the myocardium -­‐ The coronary veins come together to feed into the coronary sinus à right atrium -­‐ Found on the back of the heart (Can tell it’s the back by the groove that is straight up and down) • Pulmonary veins -­‐ There  are  right  and  left  pulmonary  veins  (For  the  right  and  left  lungs)   that  meet  together  and  empty  into  the  left  atrium  of  the  heart   -­‐ Pulmonary  veins  =  The  most  oxygen  rich  blood  vessel  in  the  body   (Returning  oxygenated  blood  from  the  lungs)   • Pulmonary artery -­‐ Pulmonary  artery  carries  oxygen-­‐poor  blood   -­‐ Blood  leaves  the  right  ventricle  to  through  the  pulmonary  artery  to  go   to  the  lungs  to  be  oxygenated   • Aorta:  The  left  ventricle  connects  to  the  aorta,  which  pumps  blood   throughout  the  body   7. Differentiate the pulmonary and systemic circuits. • Pulmonary  Circuit:   -­‐ Deoxygenated  blood  is  delivered  to  the  right  atrium  that  ultimately   sends  it  to  the  right  ventricle  via  the  pulmonary  trunk  to  be  pumped   to  the  lungs  for  the  pick  up  of  oxygen  and  the  release  of  carbon   dioxide  (Gaseous  exchange)   • Systemic  Circuit:   -­‐  Oxygenated  blood  re-­‐enters  the  left  atrium  via  the  pulmonary  veins  à   left  ventricle  to  be  send  out  to  the  rest  of  the  body  for  the  drop  off  of   oxygen  and  pick  up  of  carbon  dioxide  to  be  disposed  of   • Tracing  the  flow  of  blood  through  the  heart:Start  with  vena  cava   Blood  from  the  inferior  and  superior  vena  cava  enter  the  right  atrium  à   tricuspid  atrioventricular  valve  à  right  ventricle  à  pulmonary  semilunar   valve  à  pulmonary  artery  à  lungs,  where  have  capillary  bed  where   gaseous  exchange  occurs  à  pulmonary  vein  (Blood  is  oxygen  rich  at  this   point)  à  right  atrium  à  bicuspid  (mitral)  atrioventricular  valve  à  left   ventricle  à  aortic  semilunar  valve  à  aorta  à  tissues  of  the  body  where   there  are  capillary  beds  that  off-­‐load  oxygen  and  pick  up  waste  à  vena   cava     8. List the major coronary arteries and veins. • Arteries: Deliver oxygenated blood to the heart -­‐ Coronary arteries (Left and right coronary arteries direct blood flow directly to the heart that is supplied by the aorta) -­‐ Anterior interventricular artery -­‐ Circumflex artery -­‐ Marginal artery -­‐ Posterior interventricular artery • Veins: Pick up deoxygenated blood from the heart + coronary veins empty into the coronary sinus à vena cava à right atrium -­‐ Great cardiac vein -­‐ Middle cardiac vein -­‐ Small cardiac vein -­‐ Anterior cardiac vein • Coronary  arteries  and  veins  are  located  all  around  the  heart  that  all  go  to   the  same  place  à  Location  known  as  an  anastosome   9. Identify the name and location of the valves that control the flow of blood through the heart. • Atrioventricular Valves -­‐ Blood  flows  through  the  heart  and  it’s  the  blood  that  creates  the   pressure  for  it  to  travel  throughout  the  body—It  moves  from  high  to   low  pressure  to  conduct  movement   -­‐ Ex:  Blood  going  from  the  right  atrium  (greater  pressure)  to  the  right   ventricle  (lesser  pressure)—The  creation  in  these  pressure   differences  +  the  contraction  of  the  heart  creates  the  necessary   increase  in  pressure  for  the  blood  to  be  pushed  along  à  Structures   are  therefore  necessary  to  regulate  the  flow  of  blood  or  else  the  blood   wouldn’t  leave  the  heart   -­‐ In  general,  blood  flow  is  regulated  by  structures  =  valves  and   response  to  pressure  (Results  from  contraction  of  the  heart)   • Tricuspid  valve:   -­‐ Atrioventricular  valve  (AV)   -­‐ Located  on  the  right  side  of  the  heart  in  between  the  right  atrium  and   right  ventricle   -­‐ Thickness  of  the  right  ventricle’s  wall  is  thinner  because  it  doesn’t   need  to  generate  as  much  pressure  since  it  is  delivering


Buy Material

Are you sure you want to buy this material for

50 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Kyle Maynard Purdue

"When you're taking detailed notes and trying to help everyone else out in the class, it really helps you learn and understand the I made $280 on my first study guide!"

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Parker Thompson 500 Startups

"It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.