New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

CHM 1020 Exam 2 Study Guide

by: Rachel Belson

CHM 1020 Exam 2 Study Guide CHM 1020

Marketplace > Wayne State University > Chemistry > CHM 1020 > CHM 1020 Exam 2 Study Guide
Rachel Belson

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

These are my complied notes, including lecture practice, for Exam 2.
Survey of General Chemistry
Maryfrances Barber
Study Guide
50 ?




Popular in Survey of General Chemistry

Popular in Chemistry

This 21 page Study Guide was uploaded by Rachel Belson on Thursday February 18, 2016. The Study Guide belongs to CHM 1020 at Wayne State University taught by Maryfrances Barber in Fall 2015. Since its upload, it has received 66 views. For similar materials see Survey of General Chemistry in Chemistry at Wayne State University.


Reviews for CHM 1020 Exam 2 Study Guide


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 02/18/16
Chapter 4 Thursday, February 4, 2016 4:48 PM Chemical bond: attractive force that holds atoms together An ion forms when an atom's number of electrons changes. Metals lose valence electrons Nonmetals gain valence electrons Zinc and cadmium is +2, silver is +1 ALUMINUM AND GALLIUM….ZINC, AND CADMIUM. ANNNDDDDDDSILVER. Group VIIA nonmetals gain 1 e: -1 F- is fluoride ion Cl- is chloride ion Br- is bromide ion Group VIA nonmetals gain 2 e: -2 O(-2) is oxide ion S(-2) is sulfide ion Se(-2) selenide ion Group VA (-3) N(-3) nitride ion P(-3) phosphide ion As(-3) arsenide ion Formula unit: smallest unit Ionic compounds are neutral Total positive charge = total negative charge NaCl Sodium and oxygen Na(+) and O(-2) so the formula unit is Na2O Metals take a positive charge. Exam 2 Page 1 Exam 2 Page 2 Exam 2 Page 3 Exam 2 Page 4 Exam 2 Page 5 Exam 2 Page 6 Exam 2 Page 7 Exam 2 Page 8 HYPOCHLORITE Exam 2 Page 9 Chapter 4 Book notes: 4.1 Chemical Bonds Chemical Bonds: an attractive force that holds two atoms together in a more complex unit A. Ionic Bond: a chemical bond formed through the transfer of one or more electrons from one atom or group of atoms to another atom or group of atoms B. Ionic Compound: any compound with an ionic bond C. Covalent Bonds: chemical bond formed through the sharing of one or more pairs of electrons between two atoms D. Molecular Compound: a compound in which a covalent bond is formed 4.2 Valence Electrons and Lewis Symbols Valence electron: an electron in the outermost electron shell of a representative element or noble gas element. Lewis Symbol: the chemical symbol of an element surrounded by dots equal in number to the number of valence electrons that are present of the element. *When drawing the symbols, the element must have one dot on each side before adding a second to a side. Generalizations: 1. Representative elements in the same group of the periodic table have the same number of valence electrons. 2. The number of valence electrons for representative elements is the same as the roman numeral periodic-table group numbers. 3. The maximum number of valence electronsfor any element is 8. 4.3 The Octet Rule The most stable configuration of electrons is in the noble gases because they have 8 electrons. Octet Rule: in forming compounds, atoms of elements lose, gain, or share electrons in such a way as to produce a noble-gas electron configuration for each of the atoms involved. 4.4 The Ionic Bond Model Ion: an atom or group of atoms that is electrically charged as a result of the loss or gain of electrons. Gains an electron, negative charge Loses an electron, positive charge 4.5 The Sign and Magnitude of Ionic Charge Generalizations: 1. Metal atoms containing 1, 2, or 3 valence electrons tend to lose electrons to acquire a noble gas configuration. a. Group IA: 1+ b. Group IIA: 2+ c. Group IIIA: 3+ 2. Nonmetal atoms containing five, six, or seven valence electrons tend to gain electrons to acquire a noble gas configuration a. Group VIIA: 1- b. Group VIA: 2- c. Group VA: 3- Isoelectronic Species: an atom and an ion, or two ions, that have the same number and configuration of electrons. Elements isoelectronic to Ne (because they have a 1s2, 2s2, 2p6 configuration) Exam 2 Page 10 Elements isoelectronic to Ne (because they have a 1s2, 2s2, 2p6 configuration) N3-, O2-, F-, Na+, Mg2+ Al3+ 4.6 Lewis Structures for Ionic Compounds Lewis Structure: a combinationof Lewis symbols that represent either the transfer or the sharing of electrons in chemical bonds. Symbols=elements, Structure=compounds 4.7 Chemical Formulas for Ionic Compounds Three Rules to Writing Chemical Formulas for Ionic Compounds 1. The symbol for the positive ion is always written first 2. The charges on the ions that are present are not shown in the formula. Ionic charges must be known to determine the formula; however the charges are not explicitly shown in the formula. 3. The numbers in the formula (subscripts) give the combining ratio for the ions. 4.8 The Structure of Ionic Compounds Formula unit: the smallest whole-number repeating ratio of ions present in an ionic compound that results in charge neutrality 4.9 Recognizing and Naming Binary Ionic Compounds Binary compound: a compound in which only two elements are present Binary Ionic Compound: an ionic compound in which one element is a metal and the other element present is a nonmetal. 4.10 Polyatomic Ions Polyatomic ion: an ion formed from a group of atoms (held together by a covalent bond) through loss or gain of electrons. 4.11 Chemical Formulas and Names for Ionic Compounds Containing Polyatomic Ions 1. When more than one polyatomicion of a given kind is required in a chemical formula, the polyatomic ion is enclosed in parentheses, and a subscript, placed outside the parentheses, is used to indicate the number of polyatomic ions needed. 2. So that the identity of polyatomic ions is preserved, the same elemental symbol may be used more than once in a chemical formula. 2/11/16:Started chapter 5 working with Lewis dot structures and shared electron pairs. Will post chapter 5 in next note set. Exam 2 Page 11 Chapter 5 Monday, February 15, 2016 8:14 PM 5.1 The Covalent Bond Model 1. Ionic bonds form between atoms of dissimilar elements (metal and nonmetal). Covalent bonds form between similar or even identical atoms. 2. Electron transfer is the mechanism by which ionic bonds form. Covalent bonds occur when electron pairs are shared. 3. Ionic compounds do not contain discrete molecules. Instead, such compounds consist of an extended array of alternating positive and negative ions. In covalently bonded compounds, the basic structural unit is a molecule. Indeed such compounds are called molecularcompounds. 4. All ionic compounds are solids at room temperature. Molecular compoundsmay be solids, liquids, or gases at room temperature. 5. An ionic solid, if soluble in water, forms and aqueous solution that conducts electricity. The electrical conductance is related to the presence of ions (charged particles) in the solution. A molecular compound, if soluble in water usually produces a nonconducting aqueous solution. Covalent Bond: chemical bond resulting from two nuclei attracting the same shared electrons. 5.2: Lewis Structures for Molecular Compounds Bonding electrons: pairs of valence electrons that are shared between atoms in a covalent bond. Nonbonding electrons: pairs of valence electrons on an atom that are not involved in electron sharing. 5.3 Single, Double, and Triple Covalent Bonds Single Covalent Bond: a covalent bond in which two atoms share one pair of electrons. Double Covalent Bond: a covalent bond in which two atoms share two pairs of electrons. Triple Covalent Bond: a covalent bond in which two atoms share three pairs of electrons. 5.4 Valence Electrons and Number of Covalent Bonds Formed Not all elementscan form double or triple bonds. They have to have at least two vacancies in an atoms valence electron shell. 5.5 Coordinate Covalent Bonds Coordinate Covalent bond: a covalentbond in which both electrons in a shared pair of electrons came from one of the two atoms in the bond. Once the bond is formed, there is no way of distinguishing the electrons' source. 5.6 Systematic Procedures for Drawing Lewis Dot Structures 1. Calculate the number of valence electrons available in the moleculeby adding together the valence electron counts for all atoms in the molecule. 2. Write the chemical symbols of the atoms in the moleculein the order in which they are bonded to one another, and then place a single covalentbond involving two electrons,between each pair of bonded atoms. a. Determining the central atom is key. The central atom is the atom that has the most other atoms bonded to it. For commonbinary molecular compounds, the central atom is the atom that appears only once in the formula. S in SO3. In molecular compounds containing hydrogen, oxygen, and an additional element, the additional element is the central atom. In that case, the oxygen is bonded to the central atom, and the hydrogen is bonded to the oxygen. Carbon is the central atom in nearly all carbon-containing compounds. Hydrogen or fluorine is never the central atom. 3. Add nonbonding electronpairs to the structure such that each atom bonded to the central atom has an octet of electrons. REMEMBER: hydrogen's "octet" is only two electrons. 4. Place any remaining electronson the central atom of the structure. 5. If there are not enough electrons to give the central atom an octet, then use one or more pairs of nonbonding electrons on the atoms bonded to the central atom to form a double or triple bond. 6. Count the total number of electronsin the completed Lewis structure to make sure it is equal to the number of valence electrons available for bonding, the number calculated in step one. 5.7 Bonding in Compounds with Polyatomic Ions Present Polyatomicsare drawn differently than other structures. The polyatomicion has parentheses drawn around it, and then the atoms bonded to the ion are connected outside the parentheses. 5.8 Molecular Geometry Molecular Geometry: the description of the three dimensional arrangement of atoms within a molecule. VSEPR Theory: set of procedures for predicting the molecular geometry of a molecule using the information contained in the molecule's Lewis structure. 1. Linear a. Two electron pairs (as far as possible from each other) are found on opposite sides of a nucleus, 180 degrees apart. 2. Trigonal planar a. Three electron pairs (as far as possible from each other) are found at the corners of an equilateral triangle. 120 degree angles between them. 3. Tetrahedral a. Minimizes repulsions among four sets of electron pairs. All four sides are identical equilateral triangles. The angle between any two electrons is 109 degrees. VSEPR Electron Group: a collectionof valence electronspresent in a localized region about the central atom in a molecule. These are single, double or triple bonds. A single, double, or triple bond are all equally counted as "one electron group," because each space takes up one region of space about the atom. All moleculeswith two VSEPR electron groups are linear. Moleculeswith three VSEPR electron groups are either trigonal planar or angular. a. Angular when all three groups are bonding b. Trigonal planar when one of three groups is nonbonding. Moleculeswith four VSEPR electron groups are tetrahedral (no nonbonding groups are present), trigonal pyramidal (one nonbonding group), or angular (two nonbonding groups). Exam 2 Page 12 nonbonding group), or angular (two nonbonding groups). When molecules have more than one central atom,the central atoms can be looked at separately and then combining the results. 5.9 Electronegativity Electronegativity: a measure of the relative attraction that an atom has for the shared electrons in a bond. Electronegativityvalues increase from left to right across periods and from bottom to top within groups 5.10 Bond Polarity Bond Polarity: a measure of the degree of inequality in the sharing of electrons between two atoms in a chemical bond. Nonpolar covalent bond: a covalentbond in which there is equal sharing of electrons between two atoms. Polar Covalent Bond: a covalentbond in which there is unequal sharing of electrons between two atoms. 1. Bonds that involved atoms with the same or very similar electronegativitiesare nonpolar covalentbonds. Electronegativitydifferences of .4 or less 2. Bonds with electronegativitydifferences greater than .4 but less than 1.5 are polar covalentbonds. 3. Bonds with an electronegativitydifference greater than 2 are called ionic bonds. 4. Bonds with an electronegativitydifference between 1.5 and 2 are considered ionic if the bond involvesa metal and a nonmetaland polar covalent if it contains 2 nonmetals. 5.11 Molecular Polarity Molecular polarity: a measure of the degree of inequality in the attraction of bonding electrons to various location within a molecule. Polar Molecule: a molecule in which there is an unsymmetricaldistribution of electronic charge. Nonpolar Molecule: a molecule in which there is a symmetricaldistribution of electroniccharge. 5.12 Recognizingand Naming Binary Molecular Compounds Binary Molecular Compound: a molecular compound in which only two nonmetallic elementsare present. a. Naming: the full name of the nonmetal of lower electronegativityis given first, followed by a separate word containing the stem of the name of the more electronegative nonmetal followedby the suffix -ide. b. Using prefixes is also necessary. ***when there is only 1 atom of the first named elementin the compound, only the element's name is written, without mono. 1 Mono 2 Di 3 Tri 4 Tetra 5 Penta 6 Hexa 7 Hepta 8 Octa 9 Nona 10 deca Exam 2 Page 13 Exam 2 Page 14 Exam 2 Page 15 Exam 2 Page 16 Exam 2 Page 17 Exam 2 Page 18 Exam 2 Page 19 Exam 2 Page 20 Exam 2 Page 21


Buy Material

Are you sure you want to buy this material for

50 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Jennifer McGill UCSF Med School

"Selling my MCAT study guides and notes has been a great source of side revenue while I'm in school. Some months I'm making over $500! Plus, it makes me happy knowing that I'm helping future med students with their MCAT."

Bentley McCaw University of Florida

"I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"


"Their 'Elite Notetakers' are making over $1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.