×

### Let's log you in.

or

Don't have a StudySoup account? Create one here!

×

or

## Physics 2080 Exam 2 Study Guide

by: Amanda Biddlecome

121

5

9

# Physics 2080 Exam 2 Study Guide Physics 2080

Marketplace > Clemson University > Physics 2 > Physics 2080 > Physics 2080 Exam 2 Study Guide
Amanda Biddlecome
Clemson
GPA 4.0

Get a free preview of these Notes, just enter your email below.

×
Unlock Preview

This is a study guide that gives equations, main topics, and common values and diagrams for the exam that is on chapters 19, 20, and 21.
COURSE
General Physics 2
PROF.
Dr. Pope
TYPE
Study Guide
PAGES
9
WORDS
CONCEPTS
Physics
KARMA
50 ?

## Popular in Physics 2

This 9 page Study Guide was uploaded by Amanda Biddlecome on Thursday February 18, 2016. The Study Guide belongs to Physics 2080 at Clemson University taught by Dr. Pope in Fall 2016. Since its upload, it has received 121 views. For similar materials see General Physics 2 in Physics 2 at Clemson University.

×

## Reviews for Physics 2080 Exam 2 Study Guide

×

×

### What is Karma?

#### You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 02/18/16
Physics  2080   Exam  2  Study  Guide   Chapters  19-­‐21   Exam  Date:  February  23,  2016   Amanda  Biddlecome     Equations     1)  Coulomb’s  Law  (Electrical  Force):     F=k(q q )/r 1  2 2   *k=Coulomb’s  constant     *q 1  and  q =2agnitude  of  charges  (C)           *r=distance  between  charges  (m)     2)  Electric  Fields:   E=F/q   0   *E=Electric  Field  (N/C)     *F=magnitude  of  force  on  the  test  charge   *q =0agnitude  of  the  test  charge     3)  Combination  of  Coulomb’s  Law  and  Electric  Field  equation:   E=kq/r   2   *E=electric  field  (N/C)     *k=Coulomb’s  constant       *q=magnitude  of  charge     *r=distance  between  charges     4)  Electric  Flux  (electric  field  perpendicular  to  a  surface):   φ=EAcosθ     2   *φ=electric  flux  (Nm /C)     *E=electric  flux     *A=cross-­‐sectional  area  (m)   *θ=angle  that  the  electric  field  hits  the  surface  at     5)  Gauss’s  Law:   φ=q/ε   0   *q=charge  (C)     *ε =0ermittivity  of  free  space       6)  Work  to  move  electric  charge  perpendicular  to  electric  field:   W=-­‐q Ed 0    *W=work  (J)    *q=charge  (C)     *E=electric  field     *d=distance  (m)     7)  Change  in  potential  energy:   ΔU=-­‐W     *ΔU=change  in  potential  energy  (J)     *W=work  (J)     8)  Electric  Potential:     ΔV=ΔU/q   0   *ΔV=electric  potential    (V)     *ΔU=potential  energy  (J)     *q=charge  (C)         9)  Net  potential  (sum  of  potential  energies):   V=k(q /r +q1/r )1   2  2   *V=net  potential  (V)    *k=Coulomb’s  constant   *q=charge  (C)     *r=distance  between  charges  (m)     10)  Electric  Field:     E=-­‐ΔV/Δs     *E=electric  field  (N/C  or  V/m)     *V=electric  potential  (V)       *s=distance  traveled  (m)     11)  Conservation  of  force  (E=E ):   i f *all  of  these  equations  are  equivalent  to  one  another   K +A =K +A  B B 2 2 (1/2)mv +U =(1/A)mv +U A   B B (1/2)mv =(1/2)mB +q(V -­‐V )   A2 A B   *K A  and  K Bkinetic  energy     *U Aand  U =pBtential  energy     *m=mass     *v A  and  vB=velocity     *q=charge     *V A  and  V Belectric  potential       12)  Electric  Potential  for  a  point  charge:   *be  careful  to  not  mix  up  with  electric  potential  energy     V=kq/r     *V=electric  potential  (V)     *k=Coulomb’s  constant     *q=charge  (C)     *r=distance  (m)       13)  Electric  Potential  Energy:     *be  careful  to  not  mix  up  with  electric  potential     U=q V=k0 q/r   0   *U=electric  potential  energy  (J)     *q=charges  (C)         *k=Coulomb’s  constant     *r=distance  (m)     14)  Capacitance  of  the  capacitor:   C=Q/ΔV     *C=capacitance  (F)     *Q=charge  (C)     *V=electric  potential  (V)       15)  Capacitance  for  parallel  plate  capacitors  with  plates  separated  by  air:   *be  sure  to  just  use  this  for  parallel  plate  capacitors   C=ε (A0d)       *C=capacitance  (F)     *ε =emi0sivity  of  free  space    *A=cross-­‐sectional  area  (m)     *d=separation  distance  (m)       16)  Potential  difference  across  a  capacitor:   ΔV=Q/C   *ΔV=potential  difference  (V)     *Q=charge  (C)     *C=capacitance  (F)           17)  Energy  stored  across  a  capacitor:     *all  of  these  are  equivalent     2 2 W=(1/2)QΔV=(1/2)C(ΔV) =Q /2C     *W=work  (J)       *Q=charge  (C)       *V=potential  difference  (V)     *C=capacitance  (F)       18)  Capacitance  when  space  is  filled  with  insulating  material:     C=kε (A/d)0     *C=capacitance  (F)     *k=dielectric  constant     *ε =0missivity  of  free  space       *A=cross-­‐sectional  area  (m)     *d=separation  distance  (m)       19)  Total  energy  stored  in  a  capacitor:   U=QV =(1/2)Qa=(1/2)CV =Q /2C   2 2   *U=total  energy  stored  (J)     *Q=charge  (C)     *V=potential  difference  (V)     *C=capacitance  (F)       20)  Electric  Current:     I=ΔQ/Δt     *I=current  (A)     *Q=charge  (C)     *t=time  (seconds)       21)  Amount  of  work  to  move  a  charge  from  one  terminal  to  another:     *emf=an  electric  potential,  not  a  force!   W=ΔQε     *W=work  (J)    *Q=charge  (C)     *ε=emf  (V)       22)  Electric  Drift:   I=qnAv   d   *I=current  (A)     *q=charge  (C)             *n=number  of  mobile  charges/volume     *A=area     *v=speed     23)  Number  of  free  charge  carriers:     n=N /v A    *n=number  of  free  charge  carriers    *N =Avogadro’s  Number     *v=volume   A   24)  Ohm’s  Law:   ΔV=IR     *ΔV=voltage  (V)     *I=current  (A)     *R=resistance  (Ω)     25)  Resistivity:     *different  for  every  material   ρ=R(A/l)     *ρ=resistivity  (Ωm)     *R=resistance  (Ω)     *A=cross-­‐sectional  area  (m)     *l=length  (m)           26)  Resistivity  with  temperature  changes:   ρ=ρ [1+0(T-­‐T )]   0   *ρ=resistivity  (Ωm)     *ρ =res0stivity  at  reference  temperature  (Ωm)   *α=temperature  coefficient  of  resistivity     *T=temperature  ( C)   o   27)  Resistance  with  temperature  changes:     R=R [1+0(T-­‐T )]   0   *R=resistance  (Ω)     *R =resistance  at  reference  temperature  (Ω)   0 o   *α=temperature  coefficient  of  resistivity     *T=temperature  ( C)     28)  Resistance:   R=ρl/A     *R=resistance  (Ω)     *ρ=resistivity  (Ωm)     *l=length  (m)    *A=area  (m)       29)  Power  dissipated  through  resistor:   P=IΔV=I R=(ΔV) /R   2   *P=power  (W)     *I=current  (A)     *V=potential  difference  (V)     *R=resistance  (Ω)     30)  Potential  difference  across  series  circuits:   *current  is  the  same   ΔV=IR   eq   *ΔV=potential  difference  (V)              *I=current  (A)   eq         *R =total  resistance  (Ω)     31)  Total  resistance  for  resistors  in  series:     *this  only  works  for  resistors  that  are  in  series   R =eq+R +…1  2 n   *R =total  resistance  (Ω)     *R =resistance  for  individual  resistors  (Ω)   eq 1,2…   32)  Resistors  in  Parallel:     *identical  potential  differences   *charge  is  conserved     I=I +1 2   ΔV=IR   eq   *I=current  (A)     *V=potential  difference  (V)    *R =totaleq  resistance     33)  Total  resistance  for  resistors  in  parallel:     *this  only  works  for  resistors  in  parallel   1/R =1/eq+1/R …1/R1   2 n   *R =eqtal  resistance  (Ω)     *R 1,2… =individual  resistances  (Ω)     34)  Junction  Rule:   *one  of  Kirchhoff’s  Rules   IinI out     *I inurrent  going  into  a  junction  (A)         out        *I =current  going  out  of  a  junction       Main  Ideas   -­‐Electric  Charge     *repulsion  and  attraction,  positive  and  negative  charges,  what  happens  when     you  rub  items  together,  charge  conservation,  charge  of  protons  and  electrons,     mass  of  protons  and  electrons  and  neutrons,  attraction  to  neutral  objects   -­‐Insulators  and  Conductors     *conductor,  insulator,  semiconductor   -­‐Coulomb’s  Law     *what  is  it?,  equation,  Coulomb’s  constant,  relation  to  universal  gravitation,     action-­‐reaction,  superposition   -­‐Electric  Field     *direction  of  electric  fields,  force  from  electric  field,  direction  of  force  in     relation  to  electric  field,  superposition   -­‐Electric  Field  Lines     *how  to  visualize  them,  four  rules,  originate  and  terminate,  parallel  plate     capacitor   -­‐Shielding   -­‐Electric  Flux  and  Gauss’s  Law   -­‐Electric  Potential  Energy  and  the  Electric  Potential     *electric  force,  potential  energy,  electric  potential,  potential  difference,     electron  volt,  net  potential  sum,  work,  reading  parallel  plate  capacitors   -­‐Energy  Conservation     *potential  and  kinetic  energy,  regions  of  potential  energy   -­‐Electric  Potential  of  Point  Charges     *reading  visuals,  repulsion,  attraction,  electric  potential  versus  electric  field,     ideal  conductors,  human  body  electric  fields   -­‐Equipotential  Surfaces  and  Lines   -­‐Capacitors     *work,  what  is  it?,  parallel  plate  capacitors,  insulators,  capacitance,     discharges,  dielectrics,  total  energy  storage   -­‐Electric  Current     *current,  circuits,  batteries,  emf,  work,  drift,  drift  speed   -­‐Resistance  and  Ohm’s  Law     *equation,  visualization,  how  to  graph  it,  ohmic  versus  non-­‐ohmic   -­‐Resistivity   -­‐Power  in  Electric  Circuits   -­‐Resistors  in  Series   -­‐Resistors  in  Parallel       *potential  difference,  how  to  add  them  together,  charge  conservation   -­‐Kirchhoff’s  Rules     *Junction  Rule,  Loop  Rule,  Analysis  and  Current  Direction  selection,  resistors     versus  batteries,  3  equations   -­‐Capacitor  Circuits     *how  to  add  capacitance  in  series  and  in  parallel       Common  Diagrams  and  Values   -­‐19 -­‐Charge  of  a  proton=1.60X10  C   -­‐Charge  of  an  electron=-­‐1.60X10  C   -­‐19 -­‐Number  of  electrons  in  one  coulomb=6.25X10  electrons   18 -­‐31 -­‐mass  of  electron=9.11X10  kg   -­‐mass  of  proton=1.673X10  kg   -­‐27 -­‐27 -­‐mass  of  neutron=1.675X10  kg   -­‐Coulomb’s  Constant  (k)=8.99X10  Nm /C 9 2 2   -­‐permittivity  of  free  space  (ε )=8.85X10 C /Nm   -­‐12 2 2 -­‐1Joule=1CoulombX1Volt   -­‐electron  volt  (eV)=1.6X10 J   -­‐19 -­‐Farad  (F)=1C/1V   -­‐emissivity  of  free  space  (ε )=8.85X00 C /Nm -­‐12 2 2   -­‐Avogadro’s  Number  (N )=6.02X10  Atoms   23 2   -­‐area  of  a  sphere=πr -­‐1  Kilowatt  hour=3.60X10  J   6 -­‐Circuit  Analysis  Conventions:  When  analysis  direction  and  current  direction  are  the                 same,  negative  voltage  drop;  when  analysis  direction  and  current  direction     are  opposite,  positive  current  drop;  When  analysis  direction  goes  from     negative  to  positive  on  a  battery,  positive  voltage  drop;  when  analysis     direction  goes  from  positive  to  negative  on  a  battery,  negative  voltage  drop       -­‐Parallel  Plate  Capacitor               -­‐Electric  Field  Lines  Examples           -­‐Electric  Field  Lines  Plus  Equipotential  Lines  Examples       -­‐Common  Dielectric  Constants  (k)         -­‐Simple  Circuit  with  resistor  and  capacitor  (battery)         -­‐Common  Resistivity                               -­‐Resistors  in  Series           -­‐Resistors  in  Parallel

×

×

### BOOM! Enjoy Your Free Notes!

×

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

## Why people love StudySoup

Steve Martinelli UC Los Angeles

#### "There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Amaris Trozzo George Washington University

#### "I made \$350 in just two days after posting my first study guide."

Jim McGreen Ohio University

Forbes

#### "Their 'Elite Notetakers' are making over \$1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!
×

### Refund Policy

#### STUDYSOUP CANCELLATION POLICY

All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email support@studysoup.com

#### STUDYSOUP REFUND POLICY

StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here: support@studysoup.com

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to support@studysoup.com