New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Bio Exams 1 and 2 Study Guides

by: Simrat Kaur

Bio Exams 1 and 2 Study Guides BIOL 1362

Marketplace > University of Houston > Biology > BIOL 1362 > Bio Exams 1 and 2 Study Guides
Simrat Kaur

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

This is a study guide that includes all of the information from exams 1 and 2
Biology 2
Study Guide
50 ?




Popular in Biology 2

Popular in Biology

This 21 page Study Guide was uploaded by Simrat Kaur on Saturday April 16, 2016. The Study Guide belongs to BIOL 1362 at University of Houston taught by CHEEK in Spring 2016. Since its upload, it has received 67 views. For similar materials see Biology 2 in Biology at University of Houston.


Reviews for Bio Exams 1 and 2 Study Guides


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 04/16/16
Biodiversity – Chapters 24 - 27  List characteristics shared by Archaea & Bacteria, but not Eukarya o No nuclear envelope o No membrane bound organelles o One (1) circular chromosome  List characteristics shared by Archaea & Eukarya, but not Bacteria o No peptidoglycan cell wall o More than 1 (>1) RNA polymerase o Initiator amino acid: methionine o No ribosome assembly sensitive to antibiotics  List characteristics unique to each domain o Archaea  Extremophiles: can live in harsh environments (salty, hot, freezing)  Methanogens: producers, use CO to ox2dize H to CH 2 4 hydrothermal vents, cow and termite guts  Growth at temperatures greater than 100°C  Bacteria  Peptidoglycan cell wall  One (1) RNA polymerase  No introns or histones  Eukaryotes  Nuclear envelope  No circular  Membrane bound chromosomes organelles  Many introns  One histone   IMPO    RTAN Bact A Euk T  nuclear     envelope 0 0 1  membran    e­bound  0 0 1 organelle s  circular     chromos 1 1 0 ome  peptidogl    ycan cell  1 0 0 wall  RNA     polymera 1 > >1 se  initiator     aa for M Met  Ribosome     assembly  sense to  1 0 0 antibiotics  growth at    > 100°C 0 1 0  membran    e lipids unb s unb  introns    rare s ma  histones    0 0 1  Name the 5 kingdoms within Domain Bacteria and be able to draw a phylogenetic tree showing relationships among the 5 kingdoms o Proteobacteria  Salmonella  - Vibrio  - Helicobacteria pylori  - Rhizobium  Chlamydia  Spiro- parasitic  Barrelia burgdorferi  Treponema pallidum  Cyano=parasitic  lichen  Gram-Positive  - Streptomyces  - Bacillus antrhacis  - Clostridium botulinum   Know the kingdom for each species of bacteria listed in lecture   Know characteristic that differentiates gram-positive and gram-negative bacteria and which kingdoms belong to which category o Gram-positive  No additional membrane covering cell wall  thick layer of peptidoglycan  dark stained  Pathogenic vs. Nonpathogenic  Gram-negative  Proteobacteria  Cell wall, thin layer of peptidoglycan, with additional membrane  Autotrophs (chemo and photo) vs. Heterotrophs can be pathogenic vs. nonpathogenic  Pathogenic vs nonpathogenic    Name the 4 supergroups within Domain Eukarya and be able to draw a phylogenetic tree showing relationships among the supergroups  Animalia  Plant  Fungi  Charophyte algae   Know the supergroup to which each single-celled eukaryote listed in lecture belongs   Explain what the branching pattern on a phylogenetic tree indicates about evolutionary relationships o The branch point represents a pattern of divergence o unknown shared traits   Compare phylogenetic trees to see if they represent the same or different relationships between groups   Use a phylogenetic tree to identify which groups descend from a more recent or more ancient common ancestor   Define the ancestral characteristics that unite the Archaeplastida o Shared with green algae: chlorophyll a and b   Define the shared derived traits that unite the plant kingdom o Alternation of generations-fertilization o Sporangia-multicellular organs that produce desiccation resistant spores o Gametangia-embryo o Apical meristem- cell division at the tip of the root   Draw the cycle of alternation of generations – name each generation, indicate ploidy (1n or 2n) and type of cell division that produces the single cells that develop into the next generation   Name the 7 phyla within Kingdom Plantae and be able to match the name of plants listed in lecture to the correct phylum o Liverworts o Hornworts o Mosses o Lycophytes o Monilophytes o Gymnosperms o Angiosperms o  Draw a phylogenetic tree showing relationships among the 7 plant phyla o o o o o  Draw a phylogenetic tree showing relationships among these animal phyla: Porifera, Cnidaria, Chordata, Mollusca, Annelida, Nematoda, Arthropoda o  List and map shared derived characteristics of Eumetazoa, Bilateria, Deuterostomia, and the Protostomes onto a phylogenetic tree o  Be able to indicate on the phylogenetic tree which groups are part of the Bilateria, Deuterostomia, Lophotrochozoa, Ecdysozoa o o o o o o o o o o o o o o o  List ancestral characteristics common to all animals and choanoflagellates, distinguish animals from choanoflagellates by shared derived characteristic of animals o Genes encoding rRNA o Chaperone proteins o Tubulin o  List the 4 protostome phyla discussed in lecture o Ecdysozoa o Cnidaria o Lophotrochozoa o Deuterostomes o  List shared derived characteristics of Lophotrochozoa and list 2 phyla that belong to this group o Spiral cleavage pattern of embryonic cells o Hox genes o Annelida and Mollusca  List shared derived characteristics of Ecdysozoa and 2 phyla that belong to this group o Shedding exoskeleton to grow larger o Invertebrates o Arthropoda and Nematoda o  List the 4 classes of arthropods and be able to match the name of arthropods listed in class (and in the Life video) to the correct class o Chelicerata o Crustacea o Myriapoda o Insecta o o Darwin and Natural Selection: Chapter 19  Describe Lyell’s ideas about geologic processes and inferences about Earth’s age o Lyell believed that geologic processes operate today at the same rate as in the past. o  Compare & contrast Lamarck’s ideas vs Darwin’s idea regarding mechanisms of change in living organisms o Lamarck  Species can change into new species  Use and disuse  Inheritance of acquired characteristics  Darwin  Adaptation  Species are changing due to natural selection  Survival of the fittest  Descent with modification: all species descend from a common ancestor  Artificial Selection o  Define descent with modification o All living spp descended from one ancestor o  List and recognize examples of descent with modification in living organisms, both within and between species, and fossil organisms o  Define 2 conditions necessary for natural selection and give examples that satisfy each condition o Variation in inherited traits o More offspring than environment can support o  Evaluate conditions under which natural selection could occur  Reproduction  Heredity  variation in fitness or organisms  Variation in individual characters among members of the population.  Understand that natural selection acts on individuals, but causes changes in populations o  Compare and contrast natural selection and artificial selection: conditions necessary, selection pressure, result o Both: variation in heritable trait o Artificial selection o - trait desired by humans o - desired trait increases o Natural selection o - selection pressure o - trait desired by environment o - favorable trait increases o o Chapters 11: Heredity  Define Mendel’s Law of segregation o Principles that governs heredity o  Define Mendel’s Law of independent assortment o When two or more characteristics are inherited, individual hereditary factors assort independently during gamete production, giving different traits an equal opportunity of occurring together. o  Monohybrid cross – use Punnett square to detail possible genotype of gametes and progeny and indicate progeny phenotypes o Two individuals- two or multiple alleles for a single locus. o  Dihybrid cross – use Punnett square to show possible genotypes of gametes and progeny and indicate progeny phenotype o Cross between two different lines (varieties, strains) that differ in two observed traits.  Identify dominant or recessive modes of inheritance from the notation (example: A is the dominant allele, a is the recessive allele) o  Analyze a pedigree to determine whether a trait is dominant or recessive o uctions-PBA.pdf  Dominance- whether disease alleles are dominant or recessive; (2)  Linkage- whether disease alleles are X-linked or autosomal  Autosomal chromosomes - The 22 chromosome pairs other than the XX (female) or XY (male) sex chromosomes.  Allele - A version of a gene. Humans have 2 alleles of all their autosomal genes; females have 2 alleles of X- linked genes; males have one allele of X-linked genes (and one allele of Y-linked genes).  Recessive-if any affected individual has 2 unaffected parents.  Dominant- if every affected child of non-founding parents has an affected parent. o  Use information in a pedigree to determine genotype and calculate the probability of a dominant or recessive trait being inherited by a son or daughter o  Use a Punnett square to figure out possible gamete genotype and progeny genotypes for autosomal traits o  Use genotype and phenotype of parents to figure out genotype and phenotype of offspring (and vice versa) o  Use correct notation for dominant, recessive, co-dominant, wild-type, mutant, sex-linked o co-dominant- relationship between two versions of a gene. o wild-type- characteristic that prevails among individuals in natural conditions, as distinct from an atypical mutant type. o mutant- organism or a new genetic character arising or resulting from an instance of mutation, which is a base-pair sequence change within DNA or chromosome o sex-linked- trait associated with gene that is carried only by male or female parent. o  Define gene, locus, and allele. Know how many alleles an individual diploid organism can have for each locus. o Gene: the biological code of all traits o Locus: location on a chromosome where a gene sits o Allele: version of gene that codes for specific version of a character o An individual can have 2 alleles, one from each parent, in each locus. o  Explain why the number of alleles per gene in an individual can be different from the number of alleles per gene in a population o An individual has one allele per gene in each chromosome, meaning the individual exhibits only one trait. o Vocabulary  Phylogenetic tree- branching diagram representing the evolutionary history, group of organisms  Archaea- unicellular prokaryotes distinguished by cell walls made of certain polysaccharides not found in bacterial or eukaryotic cell walls o plasma membranes composed of unique isoprene-containing phospholipids, o ribosomes and RNA polymerase similar to those of eukaryotes  Bacteria- consisting of unicellular prokaryotes distinguished by cell walls o composed largely of peptidoglycan, o plasma membranes similar to those of eukaryotic cells, o ribosomes and RNA polymerase that differ from those in archaeans or eukaryotes.  Eukarya- unicellular to multicellular organisms that have a membrane-bound nucleus containing several chromosomes. Sexual reproduction is common.  Cyanobacteria- unicellular organisms o photosynthetic o oldest fossil autotroph o ancestor of chloroplast o form soil crust o forms a symbiotic relationship with fungi resulting in lichen o early cyanobacteria began releasing oxygen into the Earth’s atmosphere. With this rising concentration of atmospheric O2, several prokaryotic groups went extinct  Excavata- Feeding groove along one side of cell o mitochondria that do not use O2 o many are heterotrophs and many are parasites o Giardia Intestinalis- intestinal parasite in mammals, transmitted by infected feces o Trypanosoma - parasite that causes sleeping sickness in mammals; transmitted by tsetse fly bites.  Stramenopile­ unicellular diatoms o 2­part silicon dioxide wall o Photosynthetic  Alveolate- Dinoflagellates o Photosynthetic o Some are symbiotic with corals (ex. Cnidaria) o Red tide o Some are bioluminescent  Plastid- organelle surrounded by multiple organelles  Diatom- unicellular, major group of algae  Dinoflagellate- Photosynthetic o Some are symbiotic with corals (ex. Cnidaria) o Red tide o Some are bioluminescent  Giardia- intestinal parasite in mammals, transmitted by feces  Trypanosoma- parasite that causes sleeping sickness in mammals, transmitted by tsetse fly bites  Plasmodium- causes malaria  Autotroph- able to make its own food and energy  Heterotroph- Consumes other organisms for energy  Saprotroph- acquiring energy by absorbing nutrients from the environment  Archaeplastida- land plants  Ancestral characteristic- shared by the ancestral and current descendants  Shared- derived trait shared by descendants  Apical meristem- cell division at roots  Sporangia- multicellular organs that produce desiccation-resistant spores  Gametangia- either makes eggs OR sperm  Sporophyte- is dominant generation, spores develops into a microscopic gametophyte within the parent sporophyte  Gametophyte- produces sperm or egg  Sporopollenin- resistant polymer that prevents spore from drying out or being crushed  Unikonta- Fungi/Animalia  Metazoa- Animalia  Eumetazoa- eukaryotic clad in Kingdom Animalia that contains most major groups  Bilateria- two-sided symmetry  Lophotrochozoa- Spiral cleavage pattern of embryonic cells o Hox genes o Annelida and Mollusca  Ecdysozoa- shedding of the exoskeleton to grow larger  Gastrulation- tissue formation  Mycorrhizae- symbiotic relationship between fungus and plant roots  Adaptation-inherited trait that enhances survival and reproduction in the envi  Natural selection- Darwin o mechanism of descent with modification o Individuals that inherit certain traits will survive better and produce more offspring in current local environment  Artificial selection- intentional reproduction of individuals to have certain traits  Evolution- theory that individuals descend from a common ancestor into better and more diverse forms  Homology- existence of shared characteristics between structures or genes in different species.  Analogy- similarity of function and resemblance of structures that have different origins  Biogeography- study of species in different environments  Hutton- Earth’s physical features are changing  Lyell- Geological process operate today at the same rate as the past  Lamarck-Species can change into new species  Cuvier- Species go extinct due to a catastrophe  Extant- opposite of extinct  Allele-alternative version of the gene  Blending hypothesis-mixing of the two parents  Particulate hypothesis-mixing of the particles  Character-varies between individuals  Trait- variant of character  P generation- parent  F1 generation- 1st offspring  F2 generation- 2nd offspring  Law of segregation- Alleles separate from each other in the formation of gametes  Law of independent assortment- Individual hereditary factors assort independently, so it gives an equal chance of occurring together  Genotype-Genetic makeup  Phenotype- What they look like  Dominant allele- is heterozygous for that trait, or possesses one of each allele, then the dominant trait is expressed.  Recessive allele- is only expressed if an organism is homozygous for that trait, or possesses two recessive alleles.  Heterozygous- having 2 different versions of hereditary particles for a character  Homozygous- having the same version of hereditary particles for a character  Punnett square- method to predict possible combinations of gametes and offspring  Monohybrid cross- one mixture of traits o Dihybrid cross- mating between parents heterozygous for 2 characters o o o  Chapters 9 & 1  Cell division  Cell cycle:  name the phases, describe the events in each phase,  know relative length of each phase with the cycle  Interphase ­ 90% of the cell cycle, high metabolic activity. The cell grows by producing proteins and organelles, and chromosomes are replicated, Nucleoli are present  G1 – o This is the portion of the cell cycle just after division, but before DNA synthesis. During this time the cell grows by producing proteins and organelles o S phase  DNA synthesis (or replication) occurs during this phase. At the beginning of  the phase, each chromosome is single. At the end, after DNA replication,  each chromosome consists of two sister chromatids.  most DNA from the cell cycle.   # of chromosomes = 4,   # of DNA =8)  # of sister chromatids = 4?  G2 ­ growth and preparation for cell division  o  M phase ­Cell division occurs during this short phase, which generally  involves two discrete processes: the contents of the nucleus evenly distributed to two daughter  nuclei, and the cytoplasm divides in two.  Mitosis­ division of chromosomes of the nucleus occurs. The chromosomes that have been replicated are distributed to two daughter nuclei.  Prophase   includes condensation of chromatin and dispersal of nucleoli  Spindle forms   Centrosomes begins to move away from each other  Chromosomes become visible the chromatin fibers become  discrete chromosome  Prometaphase   the attachment of spindle fibers to kinetochores.  Spindle fibers attach to kinetochores  Metaphase  chromosomes align along the metaphase plate.  Anaphase  Centromeres divide and sister chromatids become full­fledged  chromosome, sister chromatids separate and daughter  chromosomes migrate to opposite poles.  centromeres come apart, and sister chromatids become full­ fledged chromosomes, which migrate to opposite poles of the  cell.  Telophase ­both nuclear envelopes and nucleoli reform.  Cytokinesis: plant vs animal   Cytoplasm divides in two  Cytokinesis in plant cells involves the formation of a cell plate.  Cytokinesis in animal cells involves formation of a cleavage furrow.  each one has:  # of chromosomes = 4,   # of DNA =8) o o ∙   Cell division:  list the 3 main steps required, list the 3 major functions of  cell division o Roles of Cell Division   Reproduction (equal distribution of genetic material to two daughter cells)   Growth; sexually reproducing organisms develop from a single cell  Renewal and Repair: replacing cells that die from wear & tear or accidents o o ∙ Mitosis in eukaryotes:  Identify the ploidy level at the beginning and end  of cell division; Name the 5 phases and describe the events in each phase, including  what happens to chromosomes, nucleus, and cytoskeleton o o ∙   Explain how chromosomes move along spindle & where spindle attaches o Motor proteins and the elongating and shortening of spindle  attaches  o o   Identify organs in which mitosis occurs.  every organ except the nervous system (brain and nerves)   sex organs do have mitosis too, but they produce sex cells (sperm and ova) by meiosis.  o o o o o o ∙   Define the terms:  ploidy, haploid, and diploid  Ploidy  o number of sets of chromosomes in a cell. Usually a gamete(sperm or egg, which  fuse into a single cell during the fertilization phase of sexual reproduction) carries a full set of chromosomes that includes a single copy of each chromosome  haploid number(n) o number of chromosomes in a gamete. Two gametes form a diploid zygote with  twice this number (2n, the zygotic or diploid number) o 2n= 1 chromosomes ­­ 2(23)=46 chromosomes  o o ∙   Name the phases of meiosis I, describe the events of each phase,  identify the ploidy level of cells at the end of meiosis I.  o o ∙   Name the phases of meiosis II, describe the events of each phase,  identify the ploidy level of cells at the end of meiosis II.  o o ∙   Indicate when homologous chromosomes separate and when sister  chromatids separate during meiosis.  o o ∙   Explain what occurs during crossing over  Crossing over is the process by which two chromosomes pair up and exchange sections of their DNA between non­sister chromatids. This often occurs during prophase 1 of  meiosis in a process called synapsis. o o ∙   Name the products of meiosis and describe their chromosome content  and their genetic make­up compared to each other o o ∙   Identify organs in which meiosis occurs o o ∙   Identify the key steps during meiosis that result in genetically different  daughter cells from the same parent cell o o Compare and contrast mitosis, meiosis I and meiosis II.  Fill in text descriptions in a chart similar to the one below. o o Mitosis o Meiosis I o Mei osis  II o Ploidy  o 2n=46­ o 46 chromo o 23 level  chromosom o 2n=46          BEFORE  es o Homologous      E division o 92­  chromo =23 nd  chromatid ­23 o 46 o 2n cells =46                          23 o 2n o 1st stag  o o o prophase o 2nd stage o o o prometap hase o 3rd stage  o o o metaphas e o 4th stage  o Sister  o o anaphase chromatids  separate  o 5th stage  o o o telophase o Product –  o 2 genetically o 2 daughter  o 4(n)  number of identical 2n  cells dau cells cells=46  o 2n=23  ghte o Genetic  sister chromo in  r  make­up each cell cells o 46 sister  o N  chromatids cells =23  chro mo o o ∙    Chapter 1  Heredity o Define Mendel’s Law of segregation & explain its physical basis in chromosome  movement during Anaphase I o o ∙   Define Mendel’s Law of independent assortment & its physical basis in  chromosome movement during Metaphase I o o  Chapter 13:  DNA structure & replication o  Griffith, Avery et al, Hershey & Chase, Meselson & Stahl experiments ­ for each  experiment: o Hershey and Chase: T2 Phage and E. Coli 35 Sulfur coated the proteins and  the 32p was for the DNA. They proved that DNA was the genetic material not proteins.  Chargaff: different compositions of the nitrogenous bases  Griffith: transformation, used streptococcus pneumoniae. Mouse thing with S cells and  R cells and Heat  Avery:DNA, RNA or protein from dead S cells was transforming R cells  Watson and Crick: DNA replication­double helix (discovered by Rosalind Franklin)   Meselson and Stahl: Used E. Coli, worked with the 3 models (dispersive,  semiconservative, etc) o ∙         Explain the purpose of each treatment in the experimental design o o ∙         State the hypothesis (or hypotheses, if there is more than one) o o ∙         Predict the likely results if a hypothesis is true o o ∙         Evaluate whether results are consistent with or contrary to a  hypothesis o o ∙         Apply Chargaff’s rule to calculate the percentage of the other 3  nucleotides when given the percentage of 1 of the 4 DNA nucleotides o o ∙         Apply complementary base pairing & anti­parallel arrangement of the  2 DNA helices to predict the sequence of one DNA strand from the other o o ∙         List the observations about DNA structure that led to Watson &  Crick’s hypothesis for DNA structure and replication o o ∙         State Watson & Crick’s description of DNA structure and their  hypothesis for replication o o ∙         *Mechanics of DNA replication:  Describe the molecules involved, the steps of the process on the leading strand and on the lagging strand o o o o o o o AMINO ACID STRUCTURE DNA  STRUCTURE o o o o For each step, predict the outcome if a particular molecule were limited or  inhibited:  e.g. a shortage of nitrogenous bases, or inhibition of primase,  DNA polymerase, DNA ligase, or helicase o Big picture: o Identify cellular process(es) that require DNA replication o Know when DNA replication occurs in life cycle of cell o o o Vocabulary o o Centrosome­ a structure that is present in the cytoplasm of animal cells that  functions as a microtubule organizing center. Contains two centrioles o Centromere­ the region on each sister chromatid where they are most likely  attached to each other by proteins that bind to  specific DNA sequences, causes  constriction in chromosome o Chromatid­ colored stuff  o Prophase­ the first stage of mitosis; chromatin condenses into discrete  chromosomes; mitotic spindle forms, and nucleolus disappears o Spindle­  Array of microtubules o  Prometaphase­   it the second stage of the mitosis. Nuclear envelope disappears. Chromosomes are now even more condensed and chromatids have  kinetochores. o Kinetochore ­ Protein structure that is attached to centromere, connects  centromeres to spindle fibers. o Metaphase ­ Centrosomes are now at the opposite poles of the cell and they  align on an imaginary central line. o Anaphase­ the fourth stage of mitosis; chromatids of each chromosome have  separated and the daughter chromosomes are moving to the poles cell o Telophase­ two daughter nuclei form in cell. Nucleoli reappear. Mitotic division is  now complete. o Cleavage furrow­ groove around the animal cell near the old metaphase plate  o Traits­ Variant of a character  o Gene­ specific sequence of DNA nucleotides of the molecule of a chromosome  o Locus ­ location of a gene on a chromosomes  o Chromosome­ consists of one DNA molecule and are associated with protein  molecules. Eukaryotes have multiple, linear chromosomes located in the  nucleus. Prokaryotes have a single, circular chromosome located in the nucleoid. o Homologous chromosome ­ same length and pattern, one from father and one  for mother o Karyotype ­ picture thing in our bio lab manual  o Autosome­ a chromosome that is not a sex chromosome o Sex chromosome ­ last pair on the karyotype picture, determine the sex  o Haploid  ­ n ­ gametes  o Diploid ­2n ­ zygote  o Meiosis ­ reduces 2n to n o Meiosis I o Meiosis II ­ Cell division that reduces a 2n(diploid) number of chromosomes to a  haploid number. o Allele­ alternative versions of a gene that may produce distinguishable  phenotypic effects o Chiasma ­ A point where crossovers occur o  Synaptonemal Complex   ­ Is a protein structure that forms between homologous  chromosomes during meiosis and is thought to mediate chromosome pairing,  synapsis and recombination. o Law of segregation­ Mendel's 1st law; 2 alleles separate (An)phase I o Law of independent assortment­ Mendel’s 2nd law; each pair of alleles assort  independently of each other during gamete formation; genes for 2 characters  may act as if on different chromosomes (Metaphase I) o Sex­linked gene­ a gene located on either sex chromosome o Carrier­ an individual who is heterozygous at any given locus for a recessive  disorder. Can pass this gene onto offspring o Pyrimidine­ A and G o Purine­ U, T and C o 3’ end of nucleotide o 5’ end of nucleotide o Anti­parallel­ referring to the arrangement of the sugar­phosphate backbones in a DNA double helix; run opposite (3’ → 5’) o Rosalind Franklin­ discovered DNA double helix o James Watson & Francis Crick­ worked and experimented using the idea of a  double helix o Replication fork the y shaped region, where the parental strand are being  unwound  o DNA polymerase­ enzyme that catalyzes the elongation of new DNA by the  addition of nucleotides to the 3’ end of an existing chain.  o Helicase ­ enzymes that unwinds  o Primer ­ short pieces of complementary RNA, it starts replication  o Leading strand­ the new complementary DNA strand synthesized continuously  along the template strand toward the replication fork in a 5’ → 3’ direction o Lagging strand­ a discontinuously synthesized DNA strand that elongates by  means of Okazaki fragments, each synthesized in a 5’ → 3’ direction away from  the replication fork o DNA ligase­ a linking enzyme essential for DNA replication; catalyzes the  covalent bonding of the 3’ end of one DNA strand to the 5’ end of another o Nucleosome­ basic unit of DNA; consists of DNA wrapped around a protein core  composed of two copies of each of the four types of histone o Histone­ small protein with high proportion of highly charged amino acids that  binds to negatively charged DNA  o o o o o o o o ∙         Assume a cell with 2n = 2.  o o   Draw the chromosomes at prophase, prometaphase, metaphase, anaphase,  and telophase of mitosis. o o o   Draw the chromosomes at each stage of Meiosis I and Meiosis II. o ∙         Assume a cell with 2n = 6.   Draw each stage of mitosis and each stage  of meiosis. o o o o o o o o o o o o o o o o o o o o o o ∙         Draw a DNA replication bubble showing the origin of replication, the  replication fork, and the position of the RNA primer on the leading strand and on  the lagging strand (more than 1 RNA primer).  Be sure to show the leading strand and lagging strand for both parent strands of DNA (top and bottom of the  bubble).  Indicate the direction of elongation of the new DNA strand. o


Buy Material

Are you sure you want to buy this material for

50 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Bentley McCaw University of Florida

"I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"

Janice Dongeun University of Washington

"I used the money I made selling my notes & study guides to pay for spring break in Olympia, Washington...which was Sweet!"

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Parker Thompson 500 Startups

"It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.