New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Physics 2080; Final Exam Study Guide

by: Amanda Biddlecome

Physics 2080; Final Exam Study Guide Physics 2080

Marketplace > Clemson University > Physics 2 > Physics 2080 > Physics 2080 Final Exam Study Guide
Amanda Biddlecome
GPA 4.0

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

This study guide includes equations, main topics, and important values for everything that we have learned in class this semester.
General Physics 2
Dr. Pope
Study Guide
50 ?




Popular in General Physics 2

Popular in Physics 2

This 23 page Study Guide was uploaded by Amanda Biddlecome on Friday April 22, 2016. The Study Guide belongs to Physics 2080 at Clemson University taught by Dr. Pope in Fall 2016. Since its upload, it has received 45 views. For similar materials see General Physics 2 in Physics 2 at Clemson University.


Reviews for Physics 2080; Final Exam Study Guide


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 04/22/16
Physics  2080     Final  Exam  Study  Guide   April  22,  2016   Amanda  Biddlecome     Equations     1)  How  to  find  temperature  in  Fahrenheit:      F =(9/5)T +32°   c                 *T =FFhrenheit  Temperature   *T =Cclsius  Temperature     2)  How  to  find  temperature  in  Celsius:    C =(T -­‐3F)(5/9)     *T =CClsius  Temperature   *T =Fahrenheit  Temperature F    3)  How  to  find  temperature  in  Kelvin:      K =T +27C.15       *T =KKlvin  Temperature   *T =CClsius  Temperature     4)  Thermal  Expansion  (Linear)   *ΔT  is  the  same  for  Kelvin  and  Celsius   *α  can  be  represented  as  either  Kelvin  or  Celsius  and  varies  by  material      ΔL=αLΔT     *ΔL=change  in  length       *α=coefficients  of  linear  expansion  (Celsius  degrees)     -­‐1 *L=length     *ΔT=change  in  temperature     5)  Thermal  Expansion  (Volume)   *ΔT  is  the  same  for  Kelvin  and  Celsius   *β  varies  by  material     ΔV=βVΔT     *ΔV=change  in  volume                  *β=coefficient  of  volume  expansion=3α  (Celsius) -­‐1   *V=volume     *ΔT=change  in  temperature     6)  Rate  of  conduction  of  heat  across  a  temperature  difference     *ΔT  is  the  same  in  Kelvin  and  Celsius   *k  varies  by  material       Q/Δt=(kA/L)ΔT   -­‐1   *Q=heat:  J(smC)        *Δt=change  in  time  (s)                   *k=thermal  conductivity  of  the  material  (W/(m-­‐K))     *A=cross-­‐sectional   area  (m)   *ΔT=change  in  temperature  (K)           7)  The  amount  of  energy  radiated  by  an  object   *emissivity  is  a  number  between  0-­‐1  and  is  unit-­‐less     P=eσT A   4   *P=energy  radiated  (W)   *e=emissivity             *σ=Stefan-­‐Boltzmann  constant=5.67X10  Wm K   -­‐8 -­‐2-­‐4   *T=temperature  (K)   *A=surface  area  (m)     8)  Ideal  Gas  Law  when  given  the  number  of  moles     *Be  careful  with  the  units  in  these  values,  especially  pressure   PV=nRT     *P=pressure  (atm  or  kPa  or  Pa)   *V=volume   *n=number  of  moles         *R=universal  gas  constant=8.31  J(molK)  *T=temperature  (K)     9)  Ideal  Gas  Law  when  given  the  number  of  molecules   *Be  careful  of  the  units  in  these  values,  especially  pressure   PV=Nk T   B   *P=pressure  (atm  or  kPa  or  Pa)     *V=volume     *N=number  of  molecules       *k =Boltzmann’s  constant=1.38X10 JK  *T=temperature  (K)   -­‐1     10)  rms  speed   v rms =√[(v +v +…1v )/n]2   n2   *v rms =rms  speed     *n=number  of  moles     11)  Average  velocity      v=(v 1v +…+2 )/n   n   *v=average  speed     *n=number  of  moles     12)  Average  Kinetic  Energy   2  avg =(1/2)mv rms     *K =avgragen  kinetic  energy     *m=mass     *v rms =rms  speed     13)  Average  Kinetic  Energy     K avg =(3/2)kT     *K =avgrage  kinetic  energy     *k=Boltzman’s  constant=1.38X10 J/K     -­‐23   *T=temperature  (K)     14)  rms  speed   *this  is  a  combination  of  the  two  Average  Kinetic  Energy  equations   rms =√[(3kT)/m]     *v rms =rms  speed     *k=Boltzman’s  constant=1.38X10 J/K   -­‐23   *T=temperature  (K)    *m=mass             15)  Internal  Energy      U=(3/2)NkT=(3/2)nRT     *U=internal  energy  (J)     *N=number  of  molecules         *k=Boltzman’s  constant=1.38X10 J/K     *T=temperature  (K)         *n=number  of  moles    *R=universal  gas  constant=8.31J/(molK)       16)  The  amount  of  heat  required  to  raise  a  mass’s  temperature   *Be  sure  the  units  in  the  specific  heat  match  the  units  of  mass     *ΔT  is  the  same  in  Kelvin  and  Celsius   Q=mcΔT     *Q=heat     *m=mass     *c=specific  heat  c(J/kgK)     *ΔT=change  in   temperature     17)  The  amount  of  heat  required  to  change  a  mass’s  phase    Q=mL     *Q=heat     *m=mass                   *L=latent  heat  (fusion,  vaporization,  or  sublimination)  (Jkg )   -­‐1   18)  Change  in  internal  energy     ΔU=U -­‐U f i   *ΔU=change  in  internal  energy  (J)   *U =final  internal  energyf  (J)       *U=initial  internal  energy  (J)       i   19)  Change  in  internal  energy   *The  signs  in  this  problem  are  very  important  and  can  be  tricky,  so  read  the   problem  well     ΔU=Q-­‐W     ΔU=change  in  internal  energy  (J)     *Q=heat  (J)     *W=work  (J)     20)  Work  done  by  an  expanding  gas  at  constant  pressure   *When  you  have  a  constant  volume,  the  work  will  be  0   W=PΔV     *W=work  (J)    *P=pressure     *V=volume       21)  Work  found  by  interpreting  a  PV  Diagram     W=NkTln(V /V )=nRTln(V /V )f   i f i   *W=work     *N=number  of  molecules     *k=Boltzman’s  Constant     *T=temperature     *ln=natural  log     *V =fifal  volume     *V=initial   volume     *n=number  of  moles        *R=universal  gas  constant       22)  Heat  released  at  a  constant  volume    Qv=nC ΔT v   *Q =hvat  at  a  constant  volume     *n=number  of  moles                 *C =svecific  heat  at  a  constant  volume     *ΔT=change  in  temperature       23)  Specific  Heat  at  a  constant  volume     vC =(3/2)R     *C =vpecific  heat  at  a  constant  volume     *R=universal  gas  constant     24)  Heat  released  at  a  constant  pressure   Q =pC ΔT  p   *Q =hpat  at  a  constant  pressure   *n=number  of  moles         *C =specific  heat  at  a  constant  pressure     *ΔT=change  in  temperature   p   25)  Specific  Heat  at  a  constant  pressure   C =(5/2)R     p   *C =ppecific  heat  at  a  constant  pressure     *R=universal  gas  constant     26)  Work  done  by  a  heat  engine   W=Q -­‐Q h   c   *W=work     *Q =heat  released  at  hot  temperature             *Q =hcat  released  at  low  temperature       27)  Efficiency  of  a  heat  engine   e=1-­‐(Q /Q )c   h   *e=efficiency    *Q =heatc  released  at  cold  temperature           *Q =hhat  released  at  hot  temperature       28)  Heat  and  temperature  relation   *the  temperatures  T  and c T  are h  ALWAYS  in  Kelvin     (Q /c )=(T hT )   c  h   *Q =hcat  released  at  cold  temperature               *Q =heat  released  at  hot  temperature     *T =cold  temperature     h c   *T =hot  temperature     29)  Efficiency  of  a  Carnot  engine   e carnot =1-­‐(T /T c   h   *e carnot =efficiency  of  a  Carnot  engine     *T =cold  temperature       *T =hot  temperature       30)  Maximum  work  a  heat  engine  can  do   W max =[1-­‐(T /T cQ ] h  h   *W max =maximum  work     *T =cold  temperature     *T =hot  temperature     *Q =hhat  released  at  hot  temperature      36)  Coulomb’s  Law  (Electrical  Force):     F=k(q q )/r1 2 2   *k=Coulomb’s  constant     *q 1  and  q 2magnitude  of  charges  (C)           *r=distance  between  charges  (m)       37)  Electric  Fields:   E=F/q   0   *E=Electric  Field  (N/C)     *F=magnitude  of  force  on  the  test  charge   *q =0agnitude  of  the  test  charge     38)  Combination  of  Coulomb’s  Law  and  Electric  Field  equation:   E=kq/r   2   *E=electric  field  (N/C)     *k=Coulomb’s  constant       *q=magnitude  of  charge     *r=distance  between  charges     39)  Electric  Flux  (electric  field  perpendicular  to  a  surface):   φ=EAcosθ       *φ=electric  flux  (Nm /C)     *E=electric  flux     *A=cross-­‐sectional  area  (m)   *θ=angle  that  the  electric  field  hits  the  surface  at     40)  Gauss’s  Law:   φ=q/ε   0   *q=charge  (C)     *ε =0ermittivity  of  free  space       41)  Work  to  move  electric  charge  perpendicular  to  electric  field:   W=-­‐q Ed 0    *W=work  (J)    *q=charge  (C)     *E=electric  field     *d=distance  (m)     42)  Change  in  potential  energy:   ΔU=-­‐W     *ΔU=change  in  potential  energy  (J)     *W=work  (J)     43)  Electric  Potential:     ΔV=ΔU/q   0   *ΔV=electric  potential    (V)     *ΔU=potential  energy  (J)     *q=charge  (C)         44)  Net  potential  (sum  of  potential  energies):   V=k(q /r +q /1 ) 1   2 2   *V=net  potential  (V)    *k=Coulomb’s  constant   *q=charge  (C)     *r=distance  between  charges  (m)     45)  Electric  Field:     E=-­‐ΔV/Δs     *E=electric  field  (N/C  or  V/m)     *V=electric  potential  (V)       *s=distance  traveled  (m)             46)  Conservation  of  force  (E=E ):i  f *all  of  these  equations  are  equivalent  to  one  another   K +A =K +A  B B (1/2)mv +U =(1/A)mv +UA   B2 B (1/2)mv =(1/2)mB +q(V -­‐V )   A 2 A B   *K A  and  KB=kinetic  energy     *U Aand  U =Botential  energy     *m=mass     *v A  and  vB=velocity     *q=charge     *V A  and  VB=electric  potential       47)  Electric  Potential  for  a  point  charge:   *be  careful  to  not  mix  up  with  electric  potential  energy     V=kq/r     *V=electric  potential  (V)     *k=Coulomb’s  constant     *q=charge  (C)     *r=distance  (m)       48)  Electric  Potential  Energy:     *be  careful  to  not  mix  up  with  electric  potential     U=q V=k0 q/r   0   *U=electric  potential  energy  (J)     *q=charges  (C)         *k=Coulomb’s  constant     *r=distance  (m)     49)  Capacitance  of  the  capacitor:   C=Q/ΔV     *C=capacitance  (F)     *Q=charge  (C)     *V=electric  potential  (V)       50)  Capacitance  for  parallel  plate  capacitors  with  plates  separated  by  air:   *be  sure  to  just  use  this  for  parallel  plate  capacitors   C=ε (A0d)       *C=capacitance  (F)     *ε =emissivity  of  free  space    *A=cross-­‐sectional  area  (m)   0   *d=separation  distance  (m)       51)  Potential  difference  across  a  capacitor:   ΔV=Q/C   *ΔV=potential  difference  (V)     *Q=charge  (C)     *C=capacitance  (F)       52)  Energy  stored  across  a  capacitor:     *all  of  these  are  equivalent     2 2 W=(1/2)QΔV=(1/2)C(ΔV) =Q /2C     *W=work  (J)       *Q=charge  (C)       *V=potential  difference  (V)     *C=capacitance  (F)       53)  Capacitance  when  space  is  filled  with  insulating  material:     C=kε (A/0)     *C=capacitance  (F)     *k=dielectric  constant     *ε 0emissivity  of  free  space       *A=cross-­‐sectional  area  (m)     *d=separation  distance  (m)         54)  Total  energy  stored  in  a  capacitor:   2 2 U=QV =(1/2)aV=(1/2)CV =Q /2C     *U=total  energy  stored  (J)     *Q=charge  (C)     *V=potential  difference  (V)     *C=capacitance  (F)       55)  Electric  Current:     I=ΔQ/Δt     *I=current  (A)     *Q=charge  (C)     *t=time  (seconds)       56)  Amount  of  work  to  move  a  charge  from  one  terminal  to  another:     *emf=an  electric  potential,  not  a  force!   W=ΔQε     *W=work  (J)    *Q=charge  (C)     *ε=emf  (V)       57)  Electric  Drift:   I=qnAv   d   *I=current  (A)     *q=charge  (C)             *n=number  of  mobile  charges/volume     *A=area     *v=speed     58)  Number  of  free  charge  carriers:     n=N /v A    *n=number  of  free  charge  carriers    *N =Avogadro’s  Number     *v=volume   A   59)  Ohm’s  Law:   ΔV=IR     *ΔV=voltage  (V)     *I=current  (A)     *R=resistance  (Ω)     60)  Resistivity:     *different  for  every  material   ρ=R(A/l)     *ρ=resistivity  (Ωm)     *R=resistance  (Ω)     *A=cross-­‐sectional  area  (m)     *l=length  (m)       61)  Resistivity  with  temperature  changes:   ρ=ρ [1+α0T-­‐T )]   0   *ρ=resistivity  (Ωm)     *ρ =resistiv0ty  at  reference  temperature  (Ωm)   *α=temperature  coefficient  of  resistivity     *T=temperature  ( C)   o   62)  Resistance  with  temperature  changes:     R=R [1+α0T-­‐T )]   0   *R=resistance  (Ω)     *R =resistance 0  at  reference  temperature  (Ω)     *α=temperature  coefficient  of  resistivity     *T=temperature  ( C)   o   63)  Resistance:   R=ρl/A     *R=resistance  (Ω)     *ρ=resistivity  (Ωm)     *l=length  (m)    *A=area  (m)       64)  Power  dissipated  through  resistor:   P=IΔV=I R=(ΔV) /R   2   *P=power  (W)     *I=current  (A)     *V=potential  difference  (V)     *R=resistance  (Ω)     65)  Potential  difference  across  series  circuits:   *current  is  the  same   ΔV=IR   eq   *ΔV=potential  difference  (V)              *I=current  (A)   eq        *R =total  resistance  (Ω)     66)  Total  resistance  for  resistors  in  series:     *this  only  works  for  resistors  that  are  in  series   R =eq+R +…1   2 n   *R =eqtal  resistance  (Ω)     *R 1,2… =resistance  for  individual  resistors  (Ω)     67)  Resistors  in  Parallel:     *identical  potential  differences   *charge  is  conserved     I=I +1 2   ΔV=IR   eq   *I=current  (A)     *V=potential  difference  (V)    *R =total eq resistance     68)  Total  resistance  for  resistors  in  parallel:     *this  only  works  for  resistors  in  parallel   1/R =1/eq+1/R …1/R 1   2 n   *R =eqtal  resistance  (Ω)     *R 1,2… =individual  resistances  (Ω)     69)  Junction  Rule:   *one  of  Kirchhoff’s  Rules   IinI out     *I inurrent  going  into  a  junction  (A)         out        *I =current  going  out  of  a  junction     70)  Magnetic  Force   F=qvBsinθ     *F=magnetic  force  *θ=angle  between  q  and  v     71)  Radius  of  the  circle  a  particle  moves  in   r=mv/qB     *r=radius  *m=mass  *v=velocity     72)  Force  on  a  current-­‐carrying  wire   F=ILBsinθ     *q=charge     *v=velocity   *B=magnetic  field  (Tesla)     *F=magnetic  force  *I=current  *L=length  of  the  wire  *B=magnetic  field     *θ=angle  between  B  and  I   73)  Total  Torque   τ=IAB     *τ=torque       *I=current     *A=area    *B=magnetic  field     74)  Ampere’s  Law   B=(μ I)/(20r)     *B=magnetic  field  *r=radius     75)  Current  in  a  Solenoid   B=μ nI 0    *μ =0ermeability  of  free  space   *I=current     *n=N/l     *μ =0ermeability  of  free  space   *B=magnetic  field   *N=number  of  loops     *l=length  of  the  wire    *I=current     76)  Magnetic  Flux   Φ=BAcosθ     *Φ=magnetic  flux  (Weber)       *B=magnetic  field     *A=current     77)  Induced  emf   ξ=-­‐N(ΔΦ/Δt)     *ξ=induced  emf       *N=number  of  loops       *ΔΦ=change  in  flux     *Δt=time   *q=charge  *B=magnetic  field     78)  Induced  emf  in  a  rotating  coil   ξ=NBAωsinωt     *N=number  of  turns     *B=magnetic  field     *ωt=angular  frequency   *ω=angular  velocity       79)  Inductance  of  a  coil   L=(NΦ)/I     *A=area     *L=inductance     *N=number  of  turns    *Φ=magnetic  flux       *I=current     80)  Energy  stored  in  a  magnetic  field  of  an  inductor   U=(1/2)LI 2     *U=energy     *L=inductance    *I=current     81)  Voltage  in  primary  vs  secondary  circuits   V =pN /N )V p s s     *V =primary  voltage    *N =secondary s coil  turns   *N =ppimary  coil  turns     *V =secondary  voltage         82)  Doppler  Effect   f =f(1+/-­‐  u/c)     *f=frequency     *u=velocity     83)  Speed  of  Light   c=fλ     *c=speed  of  light     *f=frequency     *λ=wavelength     84)  Malus’s  Law   I=I cos θ   2 0   *I=intensity     *I 0intensity  incident  on  analyzer     85)  Incident  Angle  vs  Reflected  Angle   θ =i r       *θ=iicident  angle     *θ =reflected  angle     86)  Lateral  Magnification   M=h /h =-i‐d /do i o       *M=magnification     *h=hiight  of  the  image   *h =hoight  of  the  object     *d=distance  to  image  *d =distance  to  object     87)  Mirror  Equation   1/f=1/d +1/d =2/Ro     i   *f=focal  point     88)  Distance  to  the  Image   d =i/2       *d=distance  to  the  image   *R=radius  of  curvature     89)  Snell’s  Law   n s1nθ =n sinθ1 2 2      *n=index  of  refraction  (speed  of  light  in  vacuum/speed  of  light  in  medium)     *θ =1ngle  between  normal  and  incident  ray               *θ =2ngle  between  normal  and  reflected  ray     90)  Critical  Angle   θ =sin (n /n )     c 2 1   *only  when  n >n *whe1  θ2   2 o     91)  Young’s  Bright  Fringes   dsinθ=mλ       *d=distance  between  fringes   *θ=between  the  central  and  m fringe   th     *m=fringe  number    *λ=wavelength       *m=0,1,2...       92)  Young’s  Dark  Fringe  Above  the  central  bright  fringe     dsinθ=(m+1/2)λ       *m=1,2,3...     93)  Young’s  Dark  Fringe  Below  the  central  bright  fringe     dsinθ=(m-­‐1/2)λ       *m=-­‐1,-­‐2...     94)  Constructive  Interference  (Young’s)     l2-­‐l1=mλ       *l=path  length     95)  Destructive  Interference  (Young’s)     l2-­‐l1=(m-­‐1/2)λ       *l=path  length     96)  Distance  between  peaks   y=Ltanθ     th     *y=distance  between  central  bright  and  m fringe   *L=distance  to  screen     97)  Finding  position  of  bright  fringes   dsinθ=Δl=mλ     98)  Position  of  m bright  fringe   y m(mλL)/d       *y=position  of  fringe       *L=screen  distance   *d=distance  between  slits     *m=0,1,2,3...       99)  Position  of  m dark  fringe   y =(m+1/2)(λL/d)     m   *m=1,2,3...     100)  Constructive  Interference  (reflected  waves)   (1/2)+(2d/λ)=m       *m=1,2,3...     101)  Destructive  Interference  (reflected  waves)   (1/2)+(2d/λ)=m+(1/2)       *m=0,1,2...       102)  Wavelength  of  light  in  a  medium   λ nλ vacuum /n       *λ =navelength  in  a  medium     *n=index  of  refraction     103)  Destructive  Interference  (with  a  film  made  of  a  medium)   2nt/λ vacuum =m       *m=0,1,2...     *t=thickness  of  the  film     104)  Constructive  Interference  (with  a  film  made  of  a  medium)   2nt/λ vacuum -­‐(1/2)=m       *m=0,1,2...     105)  Diffraction-­‐Location  of  Dark  Fringes  with  an  aperture   sinθ=1.22(λ/D)       *D=diameter  of  the  aperture     106)  Diffraction-­‐dark  fringes  in  single-­‐slit  interference  pattern   Wsinθ=mλ       *W=width  of  slit     *m=(+/-­‐)1,  (+/-­‐)2,  (+/-­‐)3...       107)  Time  Dilation   2 Δt=Δt /(√(0-­‐β ))       *Δt=moving  time     *Δt =0roper  time     108)  Length  Contraction   L=L √(10­‐β )       *L=moving  length     *L 0proper  length   *β=(v/c) *β=(v/c)   2   109)  Relativistic  Addition  of  Velocities   v=(v +v 1/(1+(2v v )/c ))   1 2 2   *v=velocity  of  object  in  stationary  frame   *v =1elocity  of  moving  object  1     110)  Relativistic  Momentum   p=(mv)/√(1-­‐β )=(mv)/√(1-­‐(v /c ))   2 2   *v=velocity     111)  Total  Energy  of  an  Object   E=(m c )/√01-­‐(v /c ))   2 2   112)  Rest  Energy   E 0m c 0 2       *only  when  v=0     113)  Kinetic  Energy   K=E-­‐E 0     114)  Radius  of  a  Black  Hole   2   R=2GM/c   115)  Quantized  Energy  of  a  blackbody   E nnhf     *E=energy     *n=0,1,2,3…   *h=Planck’s  Constant       *f=frequency       116)  Energy  for  quanta  of  light   E=hf     117)  Maximum  Kinetic  Energy  of  the  electron   K max =E-­‐W o    *K max =maximum  kinetic  energy    *E=energy     *W =work  function     118)  Momentum  of  photons   p=(hf/c)=(h/λ)     *p=momentum    *h=Planck’s  Constant    *f=frequency     *c=speed  of  light     *λ=wavelength     119)  Compton  Shift  Formula   Δλ=λ -­‐λ=(h/m c)(1-­‐coeθ)     120)  de  Broglie  wavelength   λ=h/p     *λ=wavelength    *h=Planck’s  constant    *p=momentum       121)  Probability  of  detecting  an  electron  in  a  single  slit  diffraction  pattern   sinθ=λ/W     122)  Heisenberg  Uncertainty  Principle   ΔEΔt>/=(h/2π)     *ΔE=change  in  energy     *Δt=change  in  time     *h=Planck’s  Constant     123)  Balmer  Series   1/λ=R((1/2 )-­‐(1/n ))   2   *R=Rydberg  Constant     *n=3,  4,  5…     124)  Paschen  Series   1/λ=R((1/n )-­‐(1/n ))   2 1   *R=Rydberg  Constant     *n =1,2,3…     *n=n +11n +2,n 13…   1   125)  Total  Mechanical  Energy  of  electron  in  Bohr  model   E n-­‐(13.6eV)Z /n   OR     E =-­‐(2.1n8X10 J)Z /n   18 2 2   *E=mechanical  energy     *Z=  atomic  number     *n=orbital  level       126)  Momentum  of  electron  in  nth  orbital   p=mv=h/λ=nh/2πr     127)  Angular  Momentum   L=rmv=nh/2π       Main  Ideas   -­‐Thermodynamics   -­‐Temperature     *heat,  thermal  contact,  thermal  equilibrium,  Zeroth  Law  of  Thermodynamics,     Fahrenheit  to  Celsius  to  Kelvin  conversions,  how  pressure  and  temperature     are  related,  absolute  zero       -­‐Thermal  Expansion     *calculations,  Volume  Thermal  Expansion  and  Linear  Thermal  Expansion   -­‐Heat     *calories,  spontaneous  heat  flow,  units,  internal  energy,  conduction,     convection,  radiation   -­‐Thermodynamic  Processes     *ideal  gas,  pv  diagrams,  isovolumic  process,  isobaric  process,  Boyle’s  Law,     adiabatic  process   -­‐Ideal  Gas  Law     *different  equations  for  moles  and  molecules   -­‐Units  of  measurement   -­‐Kinetic  Theory     *what  it  relates,  how  molecules  act  in  a  container,  pressure,  different  types  of     speed  and  how  to  calculate  them,  kinetic  energy,  potential  energy,  internal     energy     -­‐Heat     *specific  heats,  latent  heat,  phase  change  diagrams,  how  to  find  total  heat,     difference  in  heat  used  to  change  the  temperature  and  heat  used  to  change     the  phase   -­‐Zeroth  Law  of  Thermodynamics     *what  it  is   -­‐First  Law  of  Thermodynamics     *equations,  constant  volume,  how  internal  energy  and  temperature  relate,     quasi-­‐static  systems,  reversible  systems,  idealized  reversible  processes,     constant  pressure  and  changing  volume  in  relation  to  work,  free  expansion,     adiabatic  processes  and  how  they  relate  to  the  first  law     -­‐Specific  Heats     *how  to  find  them  at  constant  volume  and  constant  pressure   -­‐Second  Law  of  Thermodynamics     *spontaneous  heat  flow,  heat  engines,  work  related  to  heat  engines,     efficiency  related  to  heat  engines,  temperature  related  to  efficiency  and  work,     heat  engines  that  work  backwards,  heat  pumps   -­‐Third  Law  of  Thermodynamics     *Absolute  Zero   -­‐Electric  Charge     *repulsion  and  attraction,  positive  and  negative  charges,  what  happens  when     you  rub  items  together,  charge  conservation,  charge  of  protons  and  electrons,     mass  of  protons  and  electrons  and  neutrons,  attraction  to  neutral  objects   -­‐Insulators  and  Conductors     *conductor,  insulator,  semiconductor   -­‐Coulomb’s  Law     *what  is  it?,  equation,  Coulomb’s  constant,  relation  to  universal  gravitation,     action-­‐reaction,  superposition   -­‐Electric  Field     *direction  of  electric  fields,  force  from  electric  field,  direction  of  force  in     relation  to  electric  field,  superposition   -­‐Electric  Field  Lines     *how  to  visualize  them,  four  rules,  originate  and  terminate,  parallel  plate     capacitor   -­‐Shielding   -­‐Electric  Flux  and  Gauss’s  Law   -­‐Electric  Potential  Energy  and  the  Electric  Potential     *electric  force,  potential  energy,  electric  potential,  potential  difference,     electron  volt,  net  potential  sum,  work,  reading  parallel  plate  capacitors   -­‐Energy  Conservation     *potential  and  kinetic  energy,  regions  of  potential  energy   -­‐Electric  Potential  of  Point  Charges     *reading  visuals,  repulsion,  attraction,  electric  potential  versus  electric  field,     ideal  conductors,  human  body  electric  fields   -­‐Equipotential  Surfaces  and  Lines   -­‐Capacitors     *work,  what  is  it?,  parallel  plate  capacitors,  insulators,  capacitance,     discharges,  dielectrics,  total  energy  storage   -­‐Electric  Current     *current,  circuits,  batteries,  emf,  work,  drift,  drift  speed   -­‐Resistance  and  Ohm’s  Law     *equation,  visualization,  how  to  graph  it,  ohmic  versus  non-­‐ohmic   -­‐Resistivity   -­‐Power  in  Electric  Circuits   -­‐Resistors  in  Series   -­‐Resistors  in  Parallel       *potential  difference,  how  to  add  them  together,  charge  conservation   -­‐Kirchhoff’s  Rules     *Junction  Rule,  Loop  Rule,  Analysis  and  Current  Direction  selection,  resistors     versus  batteries,  3  equations   -­‐Capacitor  Circuits     *how  to  add  capacitance  in  series  and  in  parallel   -­‐Magnetic  Fields     *repulsion  and  attraction,  field  lines,  Earth’s  magnetic  field   -­‐Magnetic  Force  on  moving  charges     *magnetic  force,  tesla  to  gauss,  Right  Hand  Rule   -­‐Charged  Particle  in  a  Magnetic  Field     *circular  motion,  force,  mass  spectrometer,  Cyclotrons,  Synchrotrons   -­‐Magnetic  Force  Exerted  on  a  Current-­‐Carrying  Wire  Right  Hand  Rule     -­‐Torque   -­‐Ampere’s  Law     *Oerstead  Experiment,  Right  Hand  Rule,  attraction  and  repulsion     -­‐Solenoids   -­‐Induced  emf     *Faraday’s  experiment,  primary  and  secondary  circuits   -­‐Magnetic  Flux     *Webers,  perpendicular  versus  angular   -­‐Reflection  of  Light     *incident  vs  reflected  rays,  specular  reflection,  diffuse  reflection,  using   geometry  to  find  angles   -­‐Plane  Mirrors     *Properties,  magnification   -­‐Spherical  Mirrors  -­‐concave  vs  convex   -­‐Concave  Mirrors     *all  rays  involved,  real  vs  virtual  images,  how  to  calculate  heights  and     distances,  objects  outside  of  center  of  curvature,  objects  between  the  mirror     and  the  focal  point,  f,  M,  d,  d i 0   -­‐Convex  Mirrors     *how  images  appear,  f,  M,  d,  d i 0   -­‐Refraction  of  Light     *Snell’s  Law,  how  to  draw  Ray  Diagrams,  how  light  bends  between  mediums   -­‐Total  Internal  Reflection     -­‐Dispersion   -­‐Superposition  and  Interference     *definitions,  light  as  a  wave,  constructive  vs  destructive,  Young’s  Experiment,     differences  between  dark  and  bright  fringes,  all  equations  involving  this,  how     to  number  the  fringes   -­‐Interference  in  Reflected  Waves     *constructive  vs  destructive,  constructive  vs  destructive  with  film  thickness   -­‐Diffraction  and  Diffraction  Grating   -­‐Resolution   -­‐Postulates  of  Relativity     *two  postulates,  non-­‐inertial  frames,  principle  of  relativity  *Time  Dilation     *use  as  a  triangle,  equation,  event,  proper  time,  physical  and  biological     consequences  *Length  Contraction     *equation,  proper  length,  relativistic  length  contraction,  length  contraction  as     a  function  of  speed  *Relativistic  Addition  of  Velocities     *how  to  rearrange  the  equation  to  find  all  three  velocities     -­‐Relativistic  Momentum   -­‐Relativistic  Energy  -­‐resting  and  kinetic   -­‐General  Relativity     *how  it  affects  our  lives,  gravitational  waves,  black  holes,  Principle  of     Equivalence,  annihilation       Common  Diagrams  and  Values   -­‐Absolute  Zero=0  Kelvin   -­‐Freezing  point  of  water=32°F,  0°C,  273  K   -­‐Boiling  point  of  water=212°F,  100°C,  373  K   -­‐Specific  Heat  of  water  (c)=4.186  J/gram°C   -­‐Stefan-­‐Boltzmann  constant  (σ)=5.67X10 Wm K -­‐8 -­‐2 -­‐4   -­‐1 -­‐Universal  Gas  Constant  (R)=8.31  J(molK)   -­‐Botzmann’s  Constant  (k )=1.38X10bJK -­‐23 -­‐1   -­‐Room  Temperature=20°C,  68°F,  283  K   -­‐Gamma  (γ)=5/3   -­‐Specific  Heat  at  Constant  Pressure  (C )=(5/2)p   -­‐Specific  Heat  at  Constant  Volume  (C )=(3/2)v   -­‐Charge  of  a  proton=1.60X10  C  -­‐19 -­‐19 -­‐Charge  of  an  electron=-­‐1.60X10  C   -­‐Number  of  electrons  in  one  coulomb=6.25X10  electrons  18 -­‐mass  of  electron=9.11X10  kg   -­‐31 -­‐27 -­‐mass  of  proton=1.673X10  kg   -­‐mass  of  neutron=1.675X10  kg   -­‐27 9 2 2   -­‐Coulomb’s  Constant  (k)=8.99X10  Nm /C -­‐permittivity  of  free  space  (ε )=8085X10 C /Nm   -­‐12 2 2 -­‐1Joule=1CoulombX1Volt   -­‐19 -­‐electron  volt  (eV)=1.6X10 J   -­‐Farad  (F)=1C/1V   -­‐12 2 2   -­‐emissivity  of  free  space  (ε )08.85X10 C /Nm -­‐Avogadro’s  Number  (N )=6.02X10 A  atoms   23 -­‐area  of  a  sphere=πr 2   6 -­‐1  Kilowatt  hour=3.60X10  J   -­‐Circuit  Analysis  Conventions:  When  analysis  direction  and  current  direction  are  the                 same,  negative  voltage  drop;  when  analysis  direction  and  current  direction     are  opposite,  positive  current  drop;  When  analysis  direction  goes  from     negative  to  positive  on  a  battery,  positive  voltage  drop;  when  analysis     direction  goes  from  positive  to  negative  on  a  battery,  negative  voltage  drop   -­‐1  Tesla=10 Gauss   -­‐7   -­‐0 =permeability  of  free  space=4πX10 Tm/A   -­‐the  minus  sign  in  Faraday’s  Law  of  Induction  is  a  consequence  of  Lenz’s  Law     -­‐Ohm’s  Law:  substitute  ξ  in  for  ΔV   -­‐Unit  of  Inductance:  Henry’s  [H]   -­‐Speed  of  Light  (c)=3.00X10 m/s   8   -­‐Mass  of  the  earth   -­‐mass  of  an  electron   -­‐charge  of  an  electron   -­‐Gravitational  constant   -­‐how  to  convert  to  electron  volts   -­‐classical  momentum=mv   -­‐length  contraction  only  happens  on  plane  of  motion     -­‐Speed  of  Light  (c)=3X10 m/s     -­‐light  moves  from  high  index  of  refraction  to  low  index  of  refraction     -­‐magnification  of  a  plane  mirror=1   -­‐Wien’s  Displacement  Law:  f peak =(5.88X10 s K )T   10 -­‐1 -­‐1 -­‐Planck’s  Constant:  EITHER  (6.63X10 Js)  OR  (4.14X10 eVs)   -­‐34 -­‐15   -­‐Isovolumetric  Process         -­‐Isobaric  Process                               -­‐Isothermal  Process  (Boyle’s  Law)  and  Adiabatic  Process       -­‐Phase  Change  Diagram                                   -­‐Heat  Engine  Diagram         -­‐Parallel  Plate  Capacitor                   -­‐Electric  Field  Lines  Examples           -­‐Electric  Field  Lines  Plus  Equipotential  Lines  Examples       -­‐Common  Dielectric  Constants  (k)         -­‐Simple  Circuit  with  resistor  and  capacitor  (battery)         -­‐Common  Resistivity                               -­‐Resistors  in  Series           -­‐Resistors  in  Parallel              


Buy Material

Are you sure you want to buy this material for

50 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Kyle Maynard Purdue

"When you're taking detailed notes and trying to help everyone else out in the class, it really helps you learn and understand the I made $280 on my first study guide!"

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Parker Thompson 500 Startups

"It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.