New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

PHYS 1010 - Final Study Guide

by: HaleyG

PHYS 1010 - Final Study Guide PHYS 1010-01

Marketplace > Tulane University > Physics 2 > PHYS 1010-01 > PHYS 1010 Final Study Guide
GPA 3.6

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

Condensed lecture notes
Great Ideas in Science & Tech
Timothy Schuler
Study Guide
50 ?




Popular in Great Ideas in Science & Tech

Popular in Physics 2

This 8 page Study Guide was uploaded by HaleyG on Monday April 25, 2016. The Study Guide belongs to PHYS 1010-01 at Tulane University taught by Timothy Schuler in Fall 2016. Since its upload, it has received 56 views. For similar materials see Great Ideas in Science & Tech in Physics 2 at Tulane University.


Reviews for PHYS 1010 - Final Study Guide


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 04/25/16
PHYS 1010 Final Study Guide Waves (repeating motion) ­ Transmitting energy using waves ­ Transfer of energy without physically moving stuff from one point to another ­ All waves have diffraction and interference (particles have neither) ­ Diffraction: moving around an object in its path ­ Interference: overlapping waves create new waves ­ Mechanical waves: some type of physical medium transmits the waves ­ Medium is not necessarily moving left and right, just up and down ­ Electromagnetic waves: don't require a medium ­ Magnetic and electric fields that drive each other ­ Matter waves: waves behaving like particles ­ Properties of waves ­ Amplitude: height of wave ­ Wavelength: distance between peaks of waves ­ Period: time between each wave passing a certain point ­ Frequency: how many waves go by per second (basically same as period) ­ Velocity: wavelength x frequency ­ Creating waves ­ Transverse waves: amplitude is perpendicular to motion ­ Longitudinal waves: amplitude is parallel to motion ­ Interference ­ Linear Superposition: overlapping/colliding waves create a resultant wave  ­ Constructive interference: add two waves with positive amplitudes together to  get a bigger wave ­ Waves are "in phase" with each other: travel together and overlap ­ Speaker systems set up to create constructive interference (domed auditoriums, concert halls, etc.) ­ Destructive interference: add two waves with opposite amplitudes, which cancel  each other out ­ Waves "out of phase": one has positive amplitude at the same point  where the other has negative amplitude ­ Noise cancelling headphones ­ Resonance ­ Two waves of the same amplitude/wavelength moving in opposite  directions ­ Adding the amplitudes at various times ­­> standing wave pattern ­ Standing wave: stationary waves ­ Node: location where amplitude is minimum; nodes don't  change location ­ Antinode: location where amplitude is maximum ­ Waves confined between two boundaries creates a standing wave  pattern, produced at resonance ­ Musical instruments create resonance/standing waves to build  sound on top of to create more complex sounds ­ Sound waves ­ Longitudinal ­ Amplitude is pressure ­ Change in pressure ­­> volume ­ Speed of sound depends on material it travels through ­ Speakers ­ Magnet w/ coil of wire around it, electric current switching  direction creates vibration, which creates sound waves/pressure (x2: one input and one  output) ­ The Doppler Effect ­ Change in frequency as a sound­emitting object moves with  respect to an observer ­ As waves are emitted they are catching up to the wave in front of  them ­­> smaller wavelengths in front of source, bigger waves behind the source ­­>  higher frequency (higher pitch) ­ Source of sound travelling at speed of sound ­­> overlapping  waves with huge amplitude ("sonic boom") and change in pressure ("shock waves") ­ Thunder is a sonic boom: lightning heats air, which  creates expansion and a pressure/sound wave  ­ Measuring weather ­ Satellites give off waves, which travel until they hit something  dense that reflects it (like a cloud); reflected waves have a higher frequency the faster the  clouds are moving toward them/lower frequency if clouds are moving away ­ Big bang theory ­ Hubble noticed the farther away a star is from earth, the redder it  looks (lower frequency because stars are moving away) ­ Everything is moving away from everything else in the universe ­ Means that everything in the universe had to start in one place Electromagnetic Spectrum ­ Light behaves as a traveling wave of electric and magnetic fields ­ Different frequencies are different colors, most of which are invisible to humans ­ Spectrum has no upper or lower bound, and is continuous ­ All electromagnetic waves in a vacuum travel at the same speed ­ Spectrum: Long waves ­­> radio waves ­­> infrared ­­> visible light spectrum  ­­> ultraviolet ­­> x­rays ­­> gamma rays ­ Everything below visible light spectrum can't cause chemical change Reflection and Refraction ­ Reflection: light bounces off the surface in a slightly different direction ­ Refraction: light moves through the surface, and speed changes based on the  densities of the new medium; the direction then changes to compensate for the new speed ­ Light travels more slowly in denser material ­ Light has to always be the fastest thing in the room, and it takes the  fastest path, not the shortest path  ­ If light has to travel through air and water, it will spend longer in  the air and shorter in the water because it moves faster through air ­ Chromatic dispersion: light spreads out by color when moving through  glass/water, because the amount light bends depends on the frequency of light and the  density of the mediums (rainbows) ­ Higher frequencies bend more than lower frequencies ­ Reason why the sky is blue: sun is white light, which refracts when it hits the atmosphere. Light from sun travels at an angle, which then refracts at us. We see blue  because blue bends more than any other color. The sun is red at sunset because it has to  travel through a lot more atmosphere to get to us. The red light gets through because it  doesn't have to bend very much.  Polarization ­ Polarization: the direction in which the electric field is oscillating ­ Sun's light/light from most common sources is un­polarized because it  comes from all different directions ­ Using a filter that blocks one specific direction of polarization can  polarize un­polarized light ­ Filters in both directions block all light ­ Polarized sunglasses prevent glare Diffraction ­ Occurs when waves encounter a barrier that has a small opening ­ After the wave passes through, it spreads out ­ Lower frequencies bend more than high frequencies, so putting a barrier  up to block sound will result in us only hearing low pitches ­ Diffraction causing interference ­ Thomas Young's Interference experiment ­ Shining light through two openings creates overlap of waves,  creates bright spots and dark spots ­ Proves light is a wave because it interferes and diffracts ­ Problem with light as a wave ­ Shining light onto a piece of metal makes electrons pop off the  metal, but the energy and speed of those electrons did not depend on the intensity of the  light, just the color. But, the brighter light is, the more it should be moving the electrons ­ Einstein said we can explain this experiment if light is a particle ­ Light is a wave AND a particle ­ Wave/particle duality ­ Perform Interference Experiment and see particles behave like waves Issues with light ­ Light moves at a constant speed, always ­ Light behaves like a wave sometimes and like a particle sometimes Relativity: trying to describe when/where something happened ­ Reference frames: different perspectives of viewing an event ­ Space­time coordinates: 4 assigned values: N/S, E/W, up/down (space), and time ­ Different depending on reference frame ­ Idea that stationary viewer is more correct about direction of movement ­ But, there is no "correct" reference frame ­ Special relativity ­ Because of reference frames, there's no such thing as simultaneous  events (depends on motion of observer) ­ The "special theory of relativity" ­ Postulate 1: laws of physics are the same in any inertial (non­ accelerating) reference frame ­ Postulate 2: speed of light in a vacuum has the same value in all  directions and all inertial reference frames ­ Relativity of time ­ Light moves the same speed, but shorter/farther distance and  longer/shorter time depending on different reference frames ­­> Time is not absolute/different depending on reference frames ­ If you're moving, time slows down ­ Grows exponentially as speed increases ­ When travelling at the speed of light, time is infinite ­ Therefore, we can never reach the speed of light (it would take an infinite amount of time) ­ Relativity of length ­ Length of moving objects is relative ­ As an object moves, length contracts ­ Moving at the speed of light ­­> length is 0 ­ Relativity of momentum ­ Mass increases the faster you go ­ Moving at the speed of light: infinite mass requires infinite force ­ Relativity of energy ­ Mass and energy are the same thing (mass is the physical  representation of potential energy) ­ Manhattan Project: development project of nuclear weapons ­ Mass ­­> energy ­ Trinity Test: detonation of plutonium bomb ­ Proved Einstein’s theory of relativity Radiation ­ Mass turning into energy in unstable atoms ­ Nuclear fission: breaking big things apart; how we generate nuclear power ­ Leaves nuclear waste ­ Nuclear fusion: taking small atoms and ramming them together; give off energy  because they lose a little mass ­ No waste, no toxicity ­ Takes too much energy (takes more energy to complete process than we  get out of it) Light turning into an electron ­ Turns into two particles ­­> electron and positron (electron with + charge) ­ Electrons are matter ­ Positrons are anti­matter ­ Electrons smashing into positrons destroy each other and turn into light General theory of relativity ­ Covers accelerating and non­accelerating reference frames ­ You can always tell if you are accelerating by dropping an object and watching  it move, but we can't distinguish between an accelerating reference frame and gravity ­ Airplanes travel in curved paths because they take the shortest route possible.  They fly closer to the North or South Pole and then back down because the earth is  smaller further from the equator ­ Light can travel in a curved path because space itself is curved; on a  curved surface, the fastest path is curved ­ So, gravity exists because mass curves space ­ Mass creates an indentation in space­time, which explains the attractive  nature of gravity ­ The more massive an object is, the more it will curve space ­ Black holes ­ Forces on stars: gravity that pulls hydrogen atoms in causing fusion,  which creates energy; that energy pushes everything outward (balanced with gravity) ­ Hydrogen runs out and moves on to helium and so on, which creates  even more energy and the star expands outward ­ When stars start fusing iron, iron doesn't create any energy so the  explosive force goes away and gravity is all that's left ­ Crushes atoms to a tiny mass, which stretches space­time a LOT ­ Nothing can escape from a black hole ­ We see black holes because we see the light going into them ­ Bending/warping space ­ Alternative to travelling at the speed of light ­ "Wormholes" describe a mass large enough to curve space ­ Newton says that light isn't affected by gravity because light doesn't have mass;  Einstein says light will be affected by gravity because light curves ­ Gravitational lensing: light bending because of gravity ­ Proof of relativity The Creation of the Universe ­ The Big Bang: at the beginning of time, the universe existed at one point, which  exploded, sending the universe expanding in every direction ­ Evidence: the universe is still expanding ­ The universe is 14 billion years old ­ Cosmic background radiation: noise/energy in empty space leftover from the big bang ­ Less energy where there is a lot of mass (galaxies) because energy turned into mass ­ Nothing existed before the big bang because time didn't exist until the big bang ­ Big Bang ­­> particles combine to form bigger particles in the first three minutes ­ Because light from super far stars are still traveling toward us, we can look at  things really far away and be looking back in time The Death of the Universe ­ Possibilities:  1. There's not enough mass for gravity to overcome the force of the Big Bang ­­>  the universe will continue to expand forever ­ The further things go, the faster they move 2. There's lots of mass and gravity will overcome the force of the Big Bang ­­>  the universe will slow down and reverse, with the end in a "big crunch" 3. The force of gravity and the energy from the Big Bang are perfectly matched  ­­> expansion slows down and approaches zero, and then we don't know what happens  next ­ Evidence suggests the universe is close to this possibility ­ There's a lot of mass in our galaxy that we can't measure; we know it's there  because otherwise our galaxy wouldn't hold together ­ "Dark matter"; does not interact with light ­ We don't know how much there is ­ The expansion of the universe is increasing/accelerating, which does not make  sense because gravity should be slowing it down ­ "Dark energy" Atoms ­ Robert Brown saw that pollen grains and water were moving under a  microscope ­ JJ Thompson discovered a cathode­ray tube: wireless transmission, sending light that bent near magnets (electrons) from one place to another ­ Discovery of electron ­ Millikan was able to measure the charge/mass of an electron ­ Rutherford realized atoms have a positively charged nucleus ­ Discovery of proton Quarks ­ Types: UP (+2/3e), DOWN (­1/3e) ­ STRANGE, CHARMED, TOP, BOTTOM (no longer existent) ­ Protons: 2 UP and 1 DOWN ­ Neutrons: 1 UP and 2 DOWN ­ Different colors: red, green blue ­ Quarks adding up to atoms must add to white (red + green +  blue), otherwise they won't stick together ­ The Standard Model of Particles ­ Equation that combines all particles discovered and theorized that make  up everything in the universe ­ String Theory: everything in the universe is based on vibrations in energy, which cause matter and charge to exist Photoelectric effect: light behaving like a particle ­ Light as a wave ­­> interference pattern in dual slit light experiment is a  probability wave ­ The motion of particles is a probability ­ The probability is described by a wave ­ The bigger things are, the smaller their wavelengths are; so, for large things like  humans, motion is still a probability but just an immeasurably small one Heisenberg uncertainty principle: the more we know about the position of a particle, the  less we know about its momentum (and vice versa) ­ Before we measure a particle, it doesn't have a position, just a probability of a  position; by measuring it, we force it to choose properties Energy­time uncertainty ­ Photons borrow energy from the universe and turn into an electron or a positron ­ They can only borrow the energy temporarily ­ Positron = an electron moving backward in time ­ Anti­matter is matter moving backward in time ­ In­distinguishability: we can't tell two electrons apart ­ EPR Paradox: a photon turns into an electron and a positron (energy ­­> mass)  one goes to the right and one goes to the left; both have an equal chance of being a  positron or an electron, but we don't know which, because we haven't measured them ­ Even though these particles are far away, measuring one immediately  describes the properties of the other ­ Strange connection between particles ­ If this is true, information travels faster than the speed of light ­ Quantum­Xeno Paradox ­ Unstable situation like balancing a ball on a sharp point ­ Describing the situation as a factor of time and probability ­ Beginning of time ­ 100% ­ As time goes on, probability goes down ­ Not watching it for a brief amount of time measures it ­­> probability  goes away/starts over ­ By continually watching it, it is a stable situation ­ Interpretations of energy­time uncertainty ­ Hidden variables interpretation: there must be more information that we  don't know ­ Copenhagen interpretation: assuming that measuring something  collapses a wave function is problematic for some reason we don't know ­ Many worlds interpretation: measuring something makes it choose both  possibilities, which creates an infinite number of universes


Buy Material

Are you sure you want to buy this material for

50 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Janice Dongeun University of Washington

"I used the money I made selling my notes & study guides to pay for spring break in Olympia, Washington...which was Sweet!"

Bentley McCaw University of Florida

"I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"

Parker Thompson 500 Startups

"It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.