New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Final Exam Study Guide

by: jjb13n

Final Exam Study Guide PSB 3004C

Marketplace > Florida State University > Psychlogy > PSB 3004C > Final Exam Study Guide
GPA 2.54

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

Study Guides for all 14 quizzes
Physiological Psychology
Dr Hull
Study Guide
50 ?




Popular in Physiological Psychology

Popular in Psychlogy

This 45 page Study Guide was uploaded by jjb13n on Wednesday April 27, 2016. The Study Guide belongs to PSB 3004C at Florida State University taught by Dr Hull in Spring 2016. Since its upload, it has received 12 views. For similar materials see Physiological Psychology in Psychlogy at Florida State University.


Reviews for Final Exam Study Guide


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 04/27/16
Final Exam Review    Quiz 1    ● In what ways can behavior change the brain?  ○ Learning scores and brain size are correlated  ○ Strength of mating behavior is correlated with hormone levels  ○ Enlarged cerebral ventricles is correlated with schizophrenic symptoms  ● Give an example of how expectation can influence brain activity and perception.  ○ Putting a male in presence of female ­­­> change in hormone levels  ● What did Descartes believe about the pineal gland? What did he contribute to our  understanding of reflexes?  ○ He proposed the pineal gland as the junction b/w mind and body  ○ Proposed concept of spinal reflexes and their neural pathways  ○ Proposed Dualism (idea that humans have a nonmaterial soul as well as a material  body)  ● What did Paul Broca discover about the brain’s localization of language function?  ○ Broca showed that language ability is restricted to a small area, based on a patient  with damage in that area  ● What is one physical sign of schizophrenia?  ○ Enlarged cerebral ventricles  ● Summarize current opinion on the relation between brain size and intelligence.  ○ After correcting for body size, about 10% of variability in IQ can be accounted  for by brain size.  (Highest correlation coefficient reported was 0.38.)  ● What are the 3 major functional classes of neurons?  ○ Motoneurons  ○ Sensory neurons  ○ Interneurons  ● What is axonal transport, and how is it important to the functioning of neurons?  How can axonal transport be used to study pathways in the brain?  ○ Axonal transport is the movement of materials along microtubules within an axon  ○ We trace axons from one source to another using Tracing Patterns in the Brain:  ■ Anterograde Labeling uses radioactive molecules taken up by the cell and  then transported to the axon tips along microtubules  ■ Retrograde Labeling uses horseradish peroxidase (HRP) ­ it is taken up in  the axon terminals and transported to the cell bodies, then visualized  through chemical reactions  ● Describe the typical synapse. What is the sequence of events at the synapse that is  triggered by electrical activity in the axon?  ○ Info is transmitted across the synaptic cleft (20­40 nm) from the presynaptic  neuron to the postsynaptic neuron via chemical neurotransmitters  ● What are glial cells? Name four types of glial cells and describe their functions.  ○ Astrocytes (star­shaped; recieve neuronal input; monitor activity)  ■ Take up and release neurotransmitters  ■ Regulate ion balance, especially K+  ■ Provide glucose to neurons  ■ Some end on blood vessels and help regulate vasodilation  ■ Some alter shape to impede or promote synaptic connections among  neurons  ○ Microglia  ■ Encircle and remove debris from injured cells  ○ Oligodendrocytes  ■ Small glia that have a few branches to axons → fatty myelin sheaths in  CNS  ○ Schwann cells  ■ whole cell wraps around a small part of an axon in the peripheral nervous  system (PNS)  ● What are the main structural components of a typical neuron and the function of  each? Which part of the neuron “decides” whether to fire an action potential?  ○ Components:  ■ Dendrites (receive info from other cells)  ■ Cell Body (region where inputs are combined and transformed)  ■ Axon (leads away from cell body and transmits the electrical impulse)  ■ Axon Terminals (at end of axon; communicate activity to other cells)  ○ Axon hillock      ● Describe the general function of the sympathetic nervous system. List at least 4 of its  effects. Where do most of its ganglia lie?  What transmitters are released by its  preganglionic vs. postganglionic neurons?  ○ Prepares the body for action  ○ Effects:  ■ Increases blood pressure  ■ Increases breathing and heart rates  ■ Distributes blood to major muscles  ■ Slows digestion  ■ Stimulates ejaculation  ○ Has preganglionic neurons in the thoracic and lumbar spinal cord, (innervates  sympathetic chain­­which runs along each side of the spinal column), and several  other ganglia near their targets  ○ Preganglionic transmitter: Acetylcholine (ACh)  ○ Postganglionic transmitter: Norepinephrine (NE)  ● Describe the general function of the parasympathetic nervous system. List at least 4  of its effects. Which transmitter is released by its preganglionic and postganglionic  neurons?  ○ Function: to oppose sympathetic nervous system activity  ○ Effects:  ■ Promotes digestion  ■ Slows heart and breathing rates  ■ Decreases blood pressure  ■ Promotes erection and clitoral engorgement  ○ Acetylcholine    ● Name the 4 lobes of the cortex and give at least one function of each.   ○ Frontal (controls personality and communication)  ○ Parietal (Sensation and Perception)  ○ Occipital (Visual Processing)  ○ Temporal (Auditory Processing)  ● What nuclei make up the basal ganglia? Which disorder results from degeneration  of the major dopamine tract associated with the basal ganglia?  ○ Nuclei:  ■ Caudate Nucleus  ■ Putmen  ■ Globus Pallidus  ■ Substantia Nigra  ○ Parkinson’s disease  ● What is the main function of the thalamus?  ○ Relay sensory info to cortex  ● What are 4 major functions of the hypothalamus?  ○ Feeding  ○ Fighting  ○ Fleeing  ○ Fornicating  ● What is the corpus callosum? What color is it? Why?  ○ Bundle of axons that connects the two cerebral hemispheres  ○ White  ■  b/c of the axons that coordinate the 2 hemispheres    ● Name 4 structures that can be seen on a mid­sagittal section of the brain.  ○ Hypothalamus  ○ Thalamus  ○ Midbrain   ○ Pituitary  ● Where are the superior and inferior colliculi,and what are their functions?  ○ Midbrain sensory systems; together known as the tectum  ○ Superior colliculi (process visual info)  ○ Inferior colliculi (process auditory info)  ● What are the 2 major dopamine containing tracts?   ○ Nigrostriatal dopamine tract    ○ Ventral Tegmental Area     ● Where is the pineal gland, and what is its function?  What did Descartes think was  its major function?   ○ In front of & b/w the superior colliculi, on the ceiling of the midbrain   ○ Produces melatonin (for sleep)  ○ “Seat of the soul”  ● Where is the cerebellum located? What is its major function?  ○ Where the brain connects to the spinal cord  ○ Motor coordination and learning    ● Where are the pons and medulla? Give at least one function of each.  ○ Pons  ■ Attached to cerebellum  ■ Contains motor and sensory nuclei; gives rise to cranial nerves  ○ Medulla  ■ Marks transition from brain to spinal cord  ■ Contains cranial nerve nuclei that regulate breathing, heart rate, coughing,  vomiting, etc  ● What and where is the reticular formation?  ○ Involved with sleep and arousal, temperature and motor control  ○ Located in midbrain  ● Which brain area controls the pituitary?  ○ Hypothalamus  ● What are the 4 major parts of the limbic system? Give a function of each.  ○ Amygdala (emotional regulation; perception of odor)  ○ Hippocampus and fornix (learning)  ○ Cingulate gyrus (attention, emotions)  ○ Hypothalamus (emotions and motivated behaviors)  ○ Olfactory bulb (sense of smell)  ● How many layers are in the cortex? What are cortical columns?  ○ 6 layers  ○ Neurons in the cortex are organized into​  cortical columns.  ○ Each column is perpendicular to the cortical layers and serves as a unit to process  information.  ○ Cortical regions communicate with one another via tracts of axons.         Quiz 2    ● What are the 3 main factors that result in the resting potential?  ○ Negatively charged proteins in the cell  ○ Selective permeability of K+ channels  ○ Sodium/Potassium (Na+/K+) pump  ● What attracts K+ ions into the neuron?  ○ Electrostatic pressure: ions flow towards oppositely charged areas  ○ The K+ is attracted to the negative proteins inside the cell  ● Why can’t enough K+ ions come into the neuron to cancel out the negative charges?  ○ Because NA+ is simultaneously being pumped out (every 3 for 2 K+), resulting in  negative charge  ● When is the most energy expended—during the resting potential or the action  potential?  ○ Resting potential (about ­70 mV)  ● What is the Na+/K+ pump, and how does it contribute to the resting potential?  ○ It is the main effector that establishes the resting potential  ○ It pumps 3 Na+ ions out for every 2 K+ ions it pumps in, adding to the negative  charge  ○ It pumps via the use of ATP energy, as it requires a lot   ● What are graded potentials, and how do they differ from action potentials?  ○ Graded potential: postsynaptic change in potential that spreads passively along the  membrane  ■ Decreases over time and distance  ■ The greater the stimulus, the greater the response      ● What are temporal and spatial summation?  ○ Temporal  ■ The summing of potentials that arrive at the axon hillock at different times  ○ Spatial  ■ The summing of potentials that come from different parts of the cell  ● How can a given neurotransmitter have excitatory effects at one synapse and  inhibitory effects at a different synapse?  ○ Excitatory open sodium potassium channel  ○ Inhibitory opens chloride channels ­ depending on receptor subtype    ● How and where is an action potential generated? How is it transmitted along an  axon? Why does it move in only one direction?   ○ The arrival of an action potential at the axon terminals of a presynaptic neuron,  and the subsequent release of neurotransmitter, results in a small graded  depolarization (excitatory postsynaptic potential; EPSP) or graded  hyperpolarization (inhibitory postsynaptic potential; IPSP) of the membrane of  the postsynaptic cell (depending on whether the postsynaptic receptor is  excitatory or inhibitory, respectively). If enough EPSPs are received, the  postsynaptic cell’s threshold is reached and an action potential is produced.   ○ The action potential passes down the axon in a single direction (like a wave)  ○ It moves in one direction because it can’t go back to where it has already passed  because of the refractory period  ● How does the presence or absence of myelin affect this process? What is saltatory  conduction?  ○ The presence of myelin speeds it up and saves energy  ○ The absence of myelin slows down the transfer  ○ Saltatory Conduction (the jumping of action potentials from node to node)  ● Describe the 2 parts of the refractory phase. What contributes to each phase? What  is the significance of each for neuronal activity?  ○ Absolute Refractory Phase (no new action potentials are produced)  ○ Relative Refractory Phase (only strong stimulation can produce an action  potential)  ● Describe two mechanisms by which the actions of neurotransmitters are stopped  rapidly.   ○ Chemical inactivation  ○ Reuptake (transmitter is taken up into the presynaptic cell)  ○ Degradation (rapid breakdown and inactivation of transmitter by an enzyme)    ● Explain the “math” that the postsynaptic neuron uses to process the information  that it receives (in the form of postsynaptic potentials).  ○ The "math" is referring to the sum of EPSPs and IPSPs  ○ EPSPs work to "excite" the cell towards firing an action potential (cell is  depolarizing ­­­> going towards threshold)  ○ IPSPs work to bring the cell away from threshold. The neurotransmitter released  from a pre­synaptic cell results in a graded potential in the post synaptic cell.   ○ When EPSPs exceed the IPSPs (in the axon hillock) an all­or­nothing "action  potential" propagates down the axon  ● Summarize the sequence of events that occurs when a synapse is activated, from the  arrival of an action potential at the axon terminal to the release of neurotransmitter  ○ At chemical synapses, the arrival of an action potential causes voltage­gated  calcium channels to open in the membrane of the axon terminal. Calcium influx  induces vesicles to fuse to the synaptic membrane and release transmitter; the  amount released is proportional to the size of the calcium current  ● What two types of effects do transmitters have on their receptors?  ○ Io ​notropic receptors open an ion channel  ○ Metabotropic receptors activate G­ proteins  ● What does an EEG measure?  What is an ERP?  ○ EEG  ■ measures spontaneous electrical activity  ■ can reveal rapid changes in brain function  ○ ERP  ■ reflect the reaction of populations of neurons to discrete stimuli        Quiz 3    ● Name 3 areas of the body where ACh is the (or a) transmitter.  What are its 2 types  of receptor?  What is one of its functions in the brain, and what major disorder is  associated with degeneration of cholinergic input?  ○ Neuromuscular junctions  ○ Parasympathetic neurons (including the vagus, which slows the heart)  ○ Several basal forebrain nuclei that project to the hippocampus and widely  throughout the brain   ○ Receptors  ■ Nicotinic (most are ionotropic and excitatory)  ● On muscles and in the brain  ■ Muscarinic (metabotropic and can be excitatory or inhibitory)  ● Mediate parasympathetic effects and also in the brain  ○ Arousal and memory  ○ Alzheimers   ● What is the effect of curare?  Of botulinum toxin?  Of nicotine?  ○ Curare blocks nicotinic receptors; can be used to induce paralysis  ○ Botulinum toxin (Botox) blocks ACh release   ● Name the 3 catecholamines.  Name the 2 indoleamines.  ○ Catecholamines  ■ Dopamine   ■ Norepinephrine  ■ Epinephrine  ○ Indoleamines  ■ Serotonin  ■ Melatonin  ● Where do the 2 major dopamine tracts originate?  What are their names and their  major functions?  ○ Nigrostriatal tract (midbrain ­­­> substantia nigra)  ■ motor control  ○ Mesolimbic tract (midbrain ­­­> VTA)  ■ “engine” driving motivated behavior  ● What disorder is caused by degeneration of the nigrostriatal tract?  What is the  common effect of drugs of abuse?  ○ Parkinson’s disease  ○ Increased dopamine release in the mesolimbic tract  ● What is the neurotransmitter of postganglionic axons of the sympathetic nervous  system?  What is the main effect of that same transmitter in the brain?  What is the  hormone released from the adrenal medulla during times of stress?  ○ Norepinephrine ­­­> Arousal  ○ Epinephrine  ● How do SSRI antidepressants work?  What type of behavior releases that same  transmitter?  What is a major source of 5­HT neurons throughout the brain?  ○ SSRIs keep 5­HT in the synapse longer  ○ Rhythmic exercise  ○ Raphe nuclei of the midbrain and brainstem  ● What are the 2 main amino acid transmitters?  Which one is excitatory at ionotropic  receptors, and what are its 2 main ionotropic receptors?   Which is inhibitory, and  how does its ionotropic receptor work?  What drug is sometimes useful in treating a  stroke and can also → ​symptoms of schizophrenia?  ○ Glutamate (excitatory)  ■ AMPA  ■ NMDA  ○ GABA (inhibitory)  ■ It opens Cl­ channels to hyperpolarize cells  ○ Ketamine    ● Which transmitters mimic the effects of morphine and heroin?  ○ Opioid Peptides  ● What is unusual about NO?  What are two main effects of NO?  ○ It’s a gaseous transmitter and is often produced in postsynaptic cells, from where  it diffuses back to the presynaptic cell  ○ Acts through cGMP and may promote neurotransmitter release  ○ Vasodilator  ● What is unusual about endocannabinoids?  What is one presumed  endocannabinoid?   ○ Activates same receptors as marijuana  ○ Anandamide (retrograde transmitter that inhibits release of glutamate and/or  GABA)  ● Define: ligand, agonist, antagonist  ○ Ligand (molecule that binds to a receptor)  ○ Agonist (molecule that stimulates a receptor (or increases transmitter release)  ○ Antagonist (molecule that blocks a receptor)  ● What may happen to postsynaptic receptors after repeated doses of an agonist?  An  antagonist? What is tolerance?  What may give rise to withdrawal symptoms?  What is sensitization?    ○ Agonists may decrease numbers of postsynaptic receptors, making later drug  doses less able to elicit a response tolerance  ■ Gives rise to withdrawal symptoms  ○ Antagonists may increase the postsynaptic receptors, so that neurons can respond  to lower amounts of natural stimulation  ○ Sensitization (when drug responses become stronger, rather than weaker)  ● What is adenosine?  What does caffeine do to adenosine and to the release of  catecholamines?  How does this affect arousal?  ○ Caffeine blocks the effect of adenosine, an endogenous neuromodulator that  normally inhibits catecholamine release  ○ Adenosine is co­released with catecholamines and acts on autoreceptors to inhibit  further release of the catecholamines.  ○ Since caffeine blocks those inhibitory effects, more catecholamines are released,  resulting in greater arousal  ● How do benzodiazepine anxiolytics like Valium work?  Where on the receptor do  they bind?  A metabolite of what hormone may also bind to that receptor?  ○ Reduce nervous system activity  ○ Benzodiazepines bind at an ​ orphan receptor​ site– no endogenous ligand has  been found  ○ Progesterone  ● What is the main mechanism of alcohol’s effects?  ○ Activates inhibitory GABA​  receptors, including in prefrontal cortex (PFC  A​ normally inhibits impulses). It also inhibits NMDA receptors  ■ Inhibition of PFC ­­­> social disinhibition  ■ Inhibition in cerebellum ­­­> loss of motor coordination  ○ Stimulates dopamine pathways  ● Name 3 endogenous opioids. ​    ○ Enkephalins  ○ Endorphins  ○ Dynorphins  ● What are 2 psychological effects of marijuana or tetrahydrocannabinol (THC)?   What are 2 medical uses of it?  How does it exert its effects?  What is one  endogenous cannabinoid?  ○ Psychological  ■ Impairs memory  ■ Intensifies sensory experience  ○ Medical  ■ Relieve pain/nausea  ■ Combat glaucoma  ○ Cannabinoid receptors mediate the effects of THC and other compounds  ○ Endocannabinoids ­­­> homologs of marijuana produced in the brain; act as  retrograde messengers and may inhibit the release of neurotransmitter from the  presynaptic neuron  ■ Anandamide  ● What are the physical and psychological effects of nicotine?  How does it exert its  psychological effects?  ○ Increases nervous system activity  ○ Physical  ■ Increases heart rate, blood pressure, hydrochloric acid secretion, and  bowel activity, at least in part by stimulating release of epinephrine and  norepinephrine from the adrenal medulla  ○ Psychological  ■ Activates nicotinic ACh receptors in the ventral tegmental area → increase  firing in DA neurons and DA release in N. accumbens  ● What is the main way that cocaine exerts its effects?  Why is crack cocaine even  more addictive than powdered cocaine?  ○ Blocks reuptake of dopamine, serotonin, & norepinephrine  ○ Crack is smoked and enters the brain more rapidly  ● How does amphetamine work?  ○ Makes synaptic vesicles containing dopamine “leaky,” so dopamine pours into the  cytoplasm  ○  Also reverses the transporter, driving dopamine into the synapse  ● How does Ritalin work?  Why is Ritalin, when taken as prescribed, not addictive?  ○ Blocks dopamine reuptake  ○ More gradual effect; no sudden “rush”, withdrawal effects, or cravings  ● What are the common psychological effects of hallucinogens?  Which transmitter is  structurally similar to LSD?  ○ Alter sensory perception and produce peculiar experiences  ○ Serotonin  ● Which tract is stimulated, either directly or indirectly, by essentially all drugs of  abuse?  ○ Mesolimbic dopamine tract, which projects from the ventral tegmental area  (VTA) to the nucleus accumbens  ● Why are methadone and nicotine patches not addictive?   ○ They are agonists/analogs ­­­­> they partially activate the same pathways          Quiz 4      ● Describe Bertoldt’s experiment with the roosters.  Why was it important?  ○ Group 1 (Normal Controls)  ■ Grow up to have large wattles and combs, to mount and mate with hens  readily, and to fight one another and crow loudly  ○ Group 2 (Castrate in early development)  ■ When testes were removed during development, roosters showed neither  appearance or behavior of normal roosters as adults  ○ Group 3 (Castrate, but place one testis into abdominal cavity)  ■ When testes was reimplanted, immediately after its removal, the rooster  developed normal wattles and normal behavior  ○ Bertoldt concluded that the testes releases a hormone with widespread effects  ● Describe the general principles of hormone action.  (You don’t have to memorize the  list, but you should recognize and understand the significance of each.  ○ Hormones usually act in a gradual fashion  ○ Hormones act by changing the probability or intensity of a behavior.  ○ The relationship between behavior and hormones is reciprocal.  ○ A hormone may have multiple effects and one behavior can be affected by several  hormones.  ○  Effects depend on type of receptor and type of tissue.  ○ Hormones often have a pulsatile secretion pattern – in bursts. (Critical for small  amounts to be effective. Example: GnRH)  ○ Some hormones are controlled by circadian clocks.  ○ Hormones can interact with other hormones and change their effects.   ○ Across species, hormone structure is similar, but functions can vary.  ○ Hormones can affect only cells with a receptor protein for that hormone  ● Describe the differences between neural and endocrine communication.  (Again, you  don’t need to memorize them, but recognize and understand them.)  ○ Neural communication travels to precise destinations; hormonal communication  spreads throughout the body, and is picked up by cells with the proper receptor  ○ Neural messages are rapid, measured in milliseconds. Hormonal messages are  slower, measured in seconds and minutes, or for steroids, even hours or days.  ○ Distance traveled varies – the synaptic cleft is small while hormones may travel  over a meter  ○ Neural messages are digital – sequences of all­or­none potentials. Hormonal  messages are analog, or graded in strength.  ○ Neural communications are sometimes under voluntary control, while hormones  are involuntary.    ● Where are receptors for peptide and amine hormones located? How about most  receptors for steroids?  What is an additional site for steroid receptors?  What  determines whether a given cell will respond to a hormone and what that response  will be?  ○ On the surface of a cell  ○ Inside the cell  ○ Receptor isoforms  ○ Depends on the type of receptor, type of cell, and prior biochemical activity in the  cell  ○  Different cofactors illicit different responses, even from activation of the same  type of receptor  ● How is the anterior pituitary controlled? How about the posterior pituitary?  ○ The brain controls the endocrine system via the hypothalamus and pituitary.  Neurosecretory cells of the hypothalamus release oxytocin and vasopressin  directly into the general circulation via the posterior pituitary.   ○ Releasing hormones are secreted into the blood supply of the anterior pituitary.  These hormones induce the anterior pituitary to release hormones into general  circulation. Some of these anterior pituitary secretions are tropic hormones that  regulate the output of major endocrine glands elsewhere in the body.  ● Which 2 hormones are released from the posterior pituitary, and what are their  main functions?   ○ Oxytocin   ■ Involved in reproductive and parenting behavior – also in orgasm, uterine  contraction, and the milk letdown reflex  ■ Promotes pair bonding in prairie voles and probably humans, promote  erection and ejaculation, and “warm, fuzzy” feelings  ○ Vasopressin  ■ Increases blood pressure and inhibits urine formation  ■ Promote aggression and social recognition  ● What are some effects of those same chemicals when they are released within the  brain?  ○ Oxytocin – released during nursing interaction, during orgasm, and childbirth; in  females promotes pair­bonds  ○ Vasopressin – in male prairie voles, facilitates the formation of pair­bonds with  females; also → social recognition and aggression    ● Name at least 4 of the 6 hormones released by the anterior pituitary and be able to  recognize all of them.    ○ Adrenocorticotropic Hormone (ACTH)  ○ Thyroid­stimulating hormone (TSH)  ○ Follicle­stimulating hormone (FSH)  ○ Luteinizing hormone (LH)  ○ Prolactin  ○ Growth hormone (GH)  ● What is the difference between releasing hormones and tropic hormones?  ○ Tropic hormones are pituitary hormones that affect other endocrine glands.  ○ Releasing hormones are used by the hypothalamus to control the pituitary’s  release of tropic hormones  ● What are somatomedins?  ○ Hormones that normally aid growth  ■ Released by the liver in response to GH  ● What are glucocorticoids; which gland produces them?  What are their main  functions? How about mineralocorticoids?  ○ Glucocorticoids  ■ Involved in glucose metabolism; adrenal cortex (adrenal gland)  ○ Mineralocorticoids  ■ Adrenal steroids that affect ion concentrations in tissues  ● From what gland are epinephrine and norepinephrine produced? What are their  major effects?  Which autonomic system are they part of?  ○ Adrenal Medulla (Adrenal gland)  ○ Sympathetic Nervous System  ○ Epinephrine/Norepinephrine   ■ Increases heart rate, blood pressure, cardiac output and blood glucose  levels  ■  These actions result in more blood to the muscles and more glucose  available for quick energy ­­­> helps us better cope with stress  ● What is the physical relation between the adrenal cortex and the adrenal medulla?  ○ The outer 80% of the adrenal gland is the adrenal cortex, and the core 20% is the  adrenal medulla  ● Where are the adrenal glands located? How about the thyroid gland?  What is the  main effect of thyroid hormones?  ○ On top of each kidney  ○ Anterior part of the neck  ○ Effects  ■ Increase metabolic energy  ■ Promote protein synthesis  ■ Help regulate long bone growth (synergy with growth hormone)   ■ Promote neural maturation  ● What is the relationship between GnRH and FSH and LH?  What are the effects of  FSH and LH in the testes?  How about in the ovaries?  ○ Ovarian hormone release is controlled by LH and FSH, which are controlled by  GnRH.  ○ GnRH stimulates the release of LH which then stimulate the Leydig cells to  secrete testosterone (lust hormone: LLL).  ○ FSH stimulates the Sertoli cells to produce sperm (SSS)  ○ Testosterone is regulated by LH which is stimulated by gonadotropin  releasing­hormone (GnRH).  ● Be familiar with the main stages of the menstrual cycle.  ○ Follicular phase: LH → thecal cells: cholesterol → P → T   ○ FSH → granulosa cells: T → E; also grow oocyte  ○ High E for 48 hrs → positive feedback   ○ → LH surge →   ○ Break gap junctions between oocyte & granulosa cells that prevented 1st meiotic  division →   ○ 1st meiotic division, rupture of follicle →   ○ Ovulation  ● How do oral contraceptives work?  ○ They contain synthetic steroids that → negative feedback to inhibit release of  GnRH and then of FSH and LH, so no egg is released  ● Be familiar with the main steps between cholesterol and estradiol and  dihydrotesterone.  ○ Cholesterol → Progesterone → Testosterone → Estradiol or dihydrotesterone  (DHT) ­­­ depending on the intracellular enzyme  ● What is melatonin? Where and when is it produced?  ○ Provides a signal that tracks day length and the seasons  ○ The pineal gland secretes melatonin almost exclusively at night  ● What 2 hormones are produced by the pancreas?  ○ Insulin  ○ Glucagon        Quiz 5    ● What gave Darwin the idea that evolution may have given rise to species  differences?  ○ Darwin emphasized natural selection and sexual selection in response to  environmental pressures  ● What did Franklin, Watson, & Crick contribute?  ○ They discovered  the structure of DNA, realized that DNA is the means of  inheritance  ● State Darwin’s hypothesis regarding sexual selection  ○  Sexual selection –> ​ members of each sex can choose anatomical and behavioral  features in a partner that favor reproductive success. Some factors in human  sexual selection include language, social interactions, humor, and creativity  ■ Reproduction will increase a population rapidly unless factors limit it.  ■ Individuals of a species are not identical.  ■ Some variation is inherited.  ■ Not all offspring survive to reproduce.  ● What is epigenetics? How did Michael Meaney demonstrate it with mother rats?   ○ Epigenetics (experience can change the ​ expression​ of genes, though not the actual  genes)   ○ Michael Meaney found that mother rats’ style of parenting affected their pups’  behavior throughout their lives, including stress levels, parenting behavior, and  learning ability.   ● Describe the differences in cortical organization between rats and squirrels.    ○ Nocturnal rats use whiskers; a large part of cortex is devoted to whiskers, but only  a little to vision  ○ Diurnal squirrels have a larger visual cortex, less space devoted to whiskers  ● To which other primates are humans most closely related, genetically?  ○ Chimpanzees  ● What can we say about the size of the hippocampus in food­storing, vs.  non­food­storing birds?    ○ Birds that store food have a bigger hippocampus  ● How similar is the general organization of structures in rat and human brains. How  similar are the bones in the forearms of various vertebrates?   ○ General organization is similar  ○ Differences between human and rat brains are in actual and relative size of  regions  ● What is a major difference between vertebrate and invertebrate axons?  How about  the location of the CNS?  ○ Invertebrates do not have myelinated axons, but axons are bigger  ○ Vertebrates have more neurons devoted to information processing, while  invertebrates have fewer, larger, more complicated neurons for information  processing (which are easy to record from)  ○ Vertebrate ganglia have cell bodies inside and processes out; invertebrate ganglia  have cell bodies outside and a neuropil, or network, within  ○ Location of CNS  ■  Vertebrates: CNS is in the skull and spinal column  ■ Invertebrates: built around the digestive tract  ● How many layers are in human neocortex (isocortex)?  Which shows the greatest  increase in percentage of total brain volume in humans vs. other animals:  medulla,  cerebellum, or neocortex?  ○ Neocortex (Isocortex) has 6 layers  ○ Greatest increase in percentage of total brain volume in humans vs. other animals  ­­­>  neocortex (isocortex)  ■ Brain evolution shows size changes both in specific regions and overall  ■ The size of each brain structure is highly correlated with the total brain  size  ■ Rate of increase in some brain areas can differ between small and large  brains  ● When did the greatest increase in brain volume occur?  Did that increase coincide  with increasing sophistication in the use of tools?  ○ Between 2.5 M years ago and 200 K years ago  ○ No, our ancestors still made the same kind of stone axe  ■ Only AFTER human brain stopped expanding did major technological  progress ensue  ● What are 4 costs and 4 benefits of bigger brains?   ○ Costs  ■ Long gestation period  ■ Prolonged dependence on parents  ■ High metabolic cost  ■ Complex genes are vulnerable to mutation  ○ Benefits  ■ Increased survival  ■ Ability for group interaction  ■ Innovative behavior  ■ Use of tools  ■ Social learning, in primates  ● Place the following developments in proper temporal order:  walking on 2 feet;  tripling of brain size, form of trunk and arms, making stone tools.  ○ Form of trunk and arms ­­­> walking on 2 feet ­­­> making stone tools ­­­>  tripling of brain size  ● What characteristics seem to be favored in human sexual selection?   ○ language  ○ social interactions  ○ humor  ○ creativity  ● How might a change in a single gene lead to a major change in the brain?  ○ A single gene can make a large difference in brain size or function by controlling  the expression of other genes  ● What are 4 examples of relatively rapid evolution?  ○ Overuse of antibiotics speeds evolution of resistant bacteria.  ○ Bighorn rams with smaller horns are not hunted, thereby surviving longer  ○ Darwin’s finches continue to change in response to food supply.  ○ The largest cod are kept, and remaining ones mature at smaller sizes.  ● Over what period of time have human differences in skin color and facial  characteristics evolved, driven by environmental influences?  ○ Differences in skin color, facial features, and stature of inhabitants of Europe and  Asia have occurred since 50,000 years ago, in response to climate conditions  ○ Discovered through radiocarbon dating    Quiz 6    ● What is lateral inhibition?  What is its function?  ○ Lateral inhibition ­­­> Each cell inhibits its neighbors  ○ Interconnections between cells of the visual system alter the apparent brightness  of visual objects and also enhance boundaries by means of a process known as  lateral inhibition  ● What are the functions of the cornea, lens, and ciliary muscles?  ○ Cornea  ■ Focus light  ■ Bending light, which forms the image  ○ Lens  ■ Focus light  ■ Shape changes in order to focus on objects at different distances from the  eye  ■ Horizontal & amacrine cells provide lateral connections across the retina;  axons of ganglion cells carry information out of the eye to the brain  ○ Ciliary muscles (adjust the focus, by changing the shape of the lens)    ● What are the bipolar cells and ganglion cells?  What makes up the optic nerve?  ○ Bipolar cells  ■ Receive input from rods & cones  ■ Process and report light stimulation to ganglion cells  ○ Ganglion cells  ■ Produce action potentials that travel along their axons to the brain  ■ Information from many photoreceptors converges on each ganglion cell  ○ Ganglion axons form the optic nerve   ● What is the optic chiasm, and what happens there?  ○ Site where the two optic nerves leaving the eye meet   ○ In humans, half of the axons from each eye cross to the other side  ○ After passing the optic chiasm, the axons are called the optic tract  ● Describe the path of light from the cornea to the place where it activates a  photoreceptor.  ○ Light from the cornea projects to the retina → there, bipolar cells receive input  from the rods and cones → then, they synapse on ganglion cells  ● What are horizontal and amacrine cells?  ○ Horizontal cells contact photoreceptors and bipolar cells  ○ Amacrine cells contact bipolar and ganglion cells  ● Which cells in the retina generate only graded potentials, and which generate action  potentials?  ○ All cell except ganglion cells generate only graded potentials  ○ Ganglion cells generate action potentials  ● What are the photopic and scotopic systems, and when is each active?  ○ Photopic system (relies on cones)–requires more light, and allows color vision;  sensitive to wavelength    ○ Scotopic system (relies on rods)–works in dim light; relatively insensitive to  wavelength   ● What is the relationship of RETINAL and opsin in rhodopsin?  What does light do?  ○ When activated by light, rhodopsin (rod pigment) dissociates into retinal and  opsin, catalyzing an intracellular second­messenger cascade that results in the  closing of many sodium channels  ○ The resultant graded hyperpolarization leads to a decrease in glutamate release  (from tonic levels), signaling a change in illumination  ● What are 11­cis RETINAL and all­trans RETINAL?  ○ In the dark, retinal is bent at carbon #11 (11­cis retinal); it fits into a pocket in the  big opsin protein  ○ When light strikes it, the long hydrocarbon chain straightens (all­trans retinal) &  can no longer fit in the pocket  ● What type of electrophysiological response occurs in the rods & cones when  phototransduction occurs?  ○ When activated by light, rhodopsin (the rod pigment) dissociates into retinal and  opsin, catalyzing an intracellular second­messenger cascade that results in the  closing of many sodium channels  ○ The resultant graded hyperpolarization leads to a decrease in glutamate release  (from tonic levels), signaling a change in illumination  ● Describe the responses of on­center and off­center bipolar and ganglion cells  ○ Illumination of the center of an on­center/off­surround cell results in an increase  in firing, and illumination of the surround results in a decrease in firing. The  reverse pattern holds for off­center/on­surround cells  ■ Bipolar and ganglion cells have concentric receptive fields  ■ Off­center bipolar cells excite off­center ganglion cells, when light is  turned off  ■ On­center bipolar cells excite on­center ganglion cells, when light is  turned on  ■ Bipolar cells release glutamate, which always depolarizes ganglion cells  ● What transmitter is released by all rods & cones?  What are its effects on on­center  & off­center bipolar cells?  What transmitter is released by bipolar cells?  What is  its effect on ganglion cells?  ○ Rods and cones release glutamate  ■ On­center bipolar cells  ● turning on light excites them; they receive less glutamate, which  normally inhibits on­center bipolar cells    ■ Off­center bipolar cells  ● turning off light in the center of the field excites the cells; they  receive more glutamate and are depolarized  ○ Bipolar cells release glutamate (always depolarizes ganglion cells)  ● What is the relationship between on­center bipolar cells and on­center ganglion  cells?  How about off­center bipolar and off­center ganglion cells?  ○ On­center bipolar cells excite on­center ganglion cells, when light is turned on  ○ Off­center bipolar cells excite off­center ganglion cells, when light is turned off  ● How did the fovea get its name?  What kinds of photoreceptors are located there?   ○ Latin for “pit”  ○ Cones  ● Why is the blind spot blind?  Why is this not a problem for our vision?  ○ No blood vessels or axons in the front cones  ○ No receptors; ganglion cell axons exit through blind spot  ● Where in the retina do we have greatest sensitivity to dim light?  Why?  ○ 20 degrees from the center (where rods are most concentrated)  ● Where in the retina do we have greatest visual acuity?  Why?  ○ Fovea (contains highest density of cones)   ● Where do most ganglion cell axons terminate?  Where else do some of them  terminate?  ○ Most ganglion cell axons go to the lateral geniculate nucleus (LGN)  ○ Some go to the superior colliculus  ● Where is the primary visual cortex (V1)?  What is another name for that area?    ○ Occipital lobe  ○ Striate Cortex; area 17  ● Describe the receptive fields of simple and complex cells in the visual cortex. What  may provide the input to simple cells?  How about complex cells?  ○ Simple cells (bar or edge detectors) ­­­> respond to an edge or bar of a particular  width, orientation, and location  ■ 3 on­center LGN cells (provides input to simple cells)  ○ Complex cells (also respond to a bar of a particular width and orientation, but  may be located anywhere in the visual field)  ■ Several simple cells (provide input to complex cells)  ● What are the contributions of V4 and V5 to visual perception?   ○ V4 (color perception; perception of form)  ○ V5 (specialized for motion perception)  ● Where is inferotemporal (IT) cortex, and what does it contribute?  Where do IT  axons project? ​ Where are faces recognized?  ○ On inferior convexity of temporal lobe  ○ Cells in inferotemporal (IT) cortex respond to complex forms, including forms  that the subject has learned to recognize.  ○ Receptive fields in IT cortex probably develop through experience and learning.  ○ Prefrontal cortex in both monkeys and humans responds to faces; it gets input  from the IT cortex  ● How do the trichromatic and opponent process theories of color vision differ?  Which is appropriate for cones and which for ganglion and LGN cells?  ○ Trichromatic Hypothesis  ■ 3 different types of cones  ■ Each responds to a different part of the spectrum  ○ Opponent­process Hypothesis  ■ Four systems produce opposite responses to different wavelengths:  ●  +Blue/­Yellow; +Yellow/­Blue;   ●  +Red/­Green; +Green/­Red  ○ Trichromatic Hypothesis (appropriate for cones)  ○ Opponent­process Hypothesis (appropriate for ganglion and LGN cells)  ● What kinds of connections encode brightness?  ○ Some ganglion cells detect brightness and darkness  ■ Brightness detectors are stimulated by both M and L cones (+M/+L).  ■ Darkness detectors are inhibited by both M and L cones (–M/–L).  ○ 3 types of cones provide input, via bipolar cells, to ganglion cells that are  spectrally opponent or detect brightness & darkness  ● What are the 2 main processing streams from V1?  In general, what does each  encode? In which stream was patient DF’s lesion?  ○ Ventral processing stream ­­­> for identifying objects (what)  ○ Dorsal stream ­­­> for assessing the location of objects (where)  ○ DF’s lesion ­­­> Ventral processing stream        Quiz 7    What are the 4 stages of reproductive behavior?​  Give one or two examples of each.  ○ Attraction (Role of estrogen in females)  ■ Females (sex skin swelling in some primates)  ■ Males (size, strength, territory)  ○ Appetitive Behavior (motivation)  ■ Females (eye contact, proximity)  ■ Males (proximity, hurdles)  ○ Copulation  ■ Females (receptivity, lordosis)  ■ Males (mounts, intromissions, ejaculation)  ○ Refractory Phase  ■ Ultrasonic “song” in male rats  ■ Coolidge effect  ■ Pair bonding in prairie voles  ● What is unusual about copulation in dogs?  ○ The male intromits and immediately starts to ejaculate. His penis swells, making it  impossible to separate from the female for 5 – 20 minutes  ● What are pheromones? What is the vomeronasal organ?  ○ Pheromones  ■ A chemical signal that is released outside the body of an animal and affects  other members of the same species  ■ Modulates sexual behavior in mammalian species  ○ Vomeronasal organ  ■ Collection of specialized receptor cells, near to but separate from the olfactory  epithelium, that detect pheromones and send electrical signals to the accessory olfactory  bulb in the brain  ● Why do female rats need repeated vaginal intromissions, especially at her preferred  pace?  ○ It is only after repeated mechanical stimulation of the cervix and vagina will the female  rat's brain cause the release of hormones to support pregnancy  ● What is the Coolidge effect?  ○ When a male is presented with a new female, the male has renewed sexual interest in  the female, even if tired from already having copulated.  ● What usually happens when prairie voles copulate off and on over a day or two?  ○ They pair bond  ● Distinguish between the activational and organizational effects of hormones  ○ Activational  ■ Temporary change in behavior resulting from the administration of a hormone  to an adult animal (after castration testosterone can restore behavior)  ○ Organizational  ■ Permanently alters behavior  ■ Steroids have an organizational effect only when present during a sensitive  period in early development.  ● Describe the lordosis response in female rats. Why is it important?  ○ The female arches her back so the male rat can successfully intromit  ○ Lordosis makes the vaginal opening accessible and the vagina is horizontal  ● What is the most important brain area for female receptive behavior in most species?  What does estrogen do in this area?  ○ Ventromedial Hypothalamus  ○ Estrogen (E) implants in VMH → restore copulatix females  ○ E increases dendritic tree  ○ E → progesterone (P) receptors  ● To what downstream area does it project?  ○ PAG ( VMH​​  PAg​ medull​  spinal co​ lordosis)  ● What is the major brain area that controls male sexual behavior? What is a major source  of input to that area? What is a major transmitter there that facilitates male sexual  behavior?  ○ MPOA (Medial pre optic area)  ○ Input  ■ Receives input directly or indirectly from all senses  ■ Abundant estrogen and androgen receptors  ■ VNO & olfactory bulb  ○ Dopamine  ● What is a major output from that area?  ○ MPOA ​ ​ ventral midbrain, brainstem and spin> sends output back to the  sources of input  ● How does the parasympathetic system induce penile or clitoral erection?  ○ Nitric oxide (NO) from parasympathetic nerves vasodilates arterioles & relaxes smooth  muscle in corpora cavernosa  ● How do Viagra, Levitra, & Cialis work?  ○ Prolongs the effects of Nitric Oxide  ○ Inhibit the enzyme that breaks down cGMP, NO’s “second messenger.”  ● What is the SRY gene? What does it do?  ○ Sex determining region of the Y chromosome → primitive gonads → testes →  testosterone → masculinization  ○ No SRY, gonads ​ ovaries  ○ Determines sex  ● What are Wolffian ducts? What is needed for their development? What do they develop  into?  ○ Male: Wolffian (requires T) → epididymis, vas deferens, ejaculatory duct, seminal  vesicles; Sertoli cells secrMullerian hormones AMH  ● What are Mullerian ducts? What is needed for their development? What do they develop  into?  ○ Female: Müllerian (develops automatically) → oviducts, uterus, upper 2/3s of vagina.  ■ Without T, Wolffian ducts atrophy  ● What is antimullerian hormone (AMH) (a.k.a. mullerian inhibiting hormone, MIH)?  ○ Causes mullerian ducts to degenerate  ● What is the relationship between testosterone (T) and dihydrotestosterone (DHT)?  ○ Most of T’s effects on external genitals are exerted by dihydrotestosterone (DHT)  which is more potent at androgen receptors.  ○ T is converted to DHT (by 5α–reductase) locally in tissues. (T is a “prohormone.” It  can also be converted by aromatase to estradiol.)  ○ Without 5α–reductase → less complete masculinization  ○ DHT potent masculinizing hormone  ● What tissue in females forms from the same tissue type as the shaft of the penis in males?  What tissue in females is analogous to the scrotum in males?  ○ Urethral fold in male: Clos​s Shaft of penis  ○ Females: Remains separate>​ Inner labia  ○ Male (scrotum); Female (outer labia)  ● Describe Turner’s syndrome (cause and symptoms)  ○ X0  ○ Lack normal ovaries  ○ Infertile, no puberty, deficits in visuospatial skills  ○ Treated with GH & testosterone for growth, and with E & P for breast development,  menstrual cycles, and can bear children with donated eggs.  ● What is congenital adrenal hyperplasia (CAH) (cause and symptoms)?  ○ Partial masculinization of girls, hypermascuization of boys  ○ Lack of enzyme → cortisol; therefore, decreased feedback → excess ACTH → adrenal  cortex enlarges (hyperplasia) & produces more of whatever it can, including androgens  ○ Treated with corticosteroids  ○ In male: differentiation OK, but early puberty and cessation of growth.  ○ In female: enlarged clitoris and fused labia.  ○ Play more with boys’ toys, less interested in motherhood, more inclined to typical  activities and careers, more likely to be attracted to women, but more h than lesbian, excel  in visuospatial tasks  ● What is the result of alpha​reductase deficiency? What happens at puberty to these  individuals?  ○ Normal internal genitalia: testes secrete T, AMH causes Müllerian ducts to degenerate.  ○ Lack of DHT leads to inadequate masculinization of external genitalia at birth  ■ Testes in labia or abdomen  ■ Urethra & blind vagina  ■ Prostate gland: small or absent  ○ At puberty, lots of T → testes descend, scrotum darkens, phallus enlarges, muscular,  deep voice  ● Describe the cause and appearance of individuals with androgen insensitivity syndrome.  ○ Due to mutation in gene for androgen receptor (on X chromosome)  ○ Convert T → E → breast development  ○ Do not menstruate or have pubic or underarm hair  ● What is the aromatization hypothesis for rodents?  ○ Aromatization hypothesis (T must be aromatized to E in order to masculinize the brain)  ● What is the SDNP ​OA of rats? The INAH​ 3 of humans?  ○ SDN​ POA (Sexually dimorphic nucleus of the preoptic area)  ■ Same size in male and female fetuses before day 18 of gestation  ■ T surge in males (day 18 of gestation and again ~ birth) → larger SDN in males  > females 


Buy Material

Are you sure you want to buy this material for

50 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Amaris Trozzo George Washington University

"I made $350 in just two days after posting my first study guide."

Bentley McCaw University of Florida

"I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"


"Their 'Elite Notetakers' are making over $1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.