New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Minerals Exam Final Study Guide

by: Victoria Hills

Minerals Exam Final Study Guide NUTR 4550

Marketplace > Clemson University > Nutrition and Food Sciences > NUTR 4550 > Minerals Exam Final Study Guide
Victoria Hills
GPA 3.8

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

These notes cover everything discussed in class from the calcium and phosphorous, magnesium, sodium and potassium, body fluids and water balance, iron, zinc, copper and manganese, and iodine powerp...
Nutrition and Metabolism
Dr. Elliot Jesch
Study Guide
nutrition, metabolism, 4550, Jesch, minerals, final, exam, four, 4, study, guide
50 ?




Popular in Nutrition and Metabolism

Popular in Nutrition and Food Sciences

This 22 page Study Guide was uploaded by Victoria Hills on Thursday April 28, 2016. The Study Guide belongs to NUTR 4550 at Clemson University taught by Dr. Elliot Jesch in Spring 2016. Since its upload, it has received 16 views. For similar materials see Nutrition and Metabolism in Nutrition and Food Sciences at Clemson University.

Similar to NUTR 4550 at Clemson

Popular in Nutrition and Food Sciences


Reviews for Minerals Exam Final Study Guide


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 04/28/16
Clemson  University     Spring  2016   NUTR  4550  Minerals  Exam  Study  Guide     Calcium  and  Phosphorous       Slide  3   • Vitmain  D  and  calcium  work  together     • Calcium  is  also  related  to  vitamin  K  since  it  is  involved  in  the  blood  clotting   cascade   • Figure  shows  how  calcium  can  interact  with  an  inactive  protein  and  convert   it  to  its  active  form   • Calmodulin:  Calcium-­‐binding  protein     -­‐ Calcium-­‐bound  calmodulin  is  what  binds  to  an  inactive  protein  to  activate   it     • Curved  arrow  towards  the  top  right  indicates  that  a  secondary  messenger   system     -­‐ A  first  messenger  can  be  a  substance  such  as  a  hormone  that  delivers  a   message  to  a  cell  and  binds  to  a  specific  receptor  à  Activation  of  a   secondary  messenger  inside  the  cell  à  Takes  the  message  from  outside   the  cell  and  illicits  a  change  in  a  function,  gene  expression,  metabolic   activity  of  an  enzyme  or  metabolic  pathway     -­‐ Calcium  would  be  the  secondary  messenger  in  this  case  in  sending  on  the   signal  from  the  initial  hormone     Slide  4:  Hormonal  Control  of  Calcium  and  Phosphate  Metabolism   Calcium     • Relation  to  Vitamin  D:   -­‐ If  there  is  an  increase  in  vitamin  D  à  Works  to  maintain  concentration  of   calcium  in  the  blood  through  increasing  calcium  levels  in  the  blood     • Thyroid  gland:   -­‐ Can  produce  PTH  (Means  more  calcium  is  needed  in  the  blood)  that  can   affect:   a) Bone:   o Have  hydroxyapatite:  Primary  compound  stored  in  bone   § Mineral  aggregate  so  that  calcium,  phosphorous,  and   magnesium  come  together  to  form  bone   § (Most  calcium  stores  are  in  bone)   § Removes  calcium  from  bone  to  help  increase  blood-­‐calcium   concentrations     b) Kidney:   o Signaling  occurs  to  produce  1,25-­‐dihydroxyvitamin  D     o Specifically:  1,25-­‐hydroxylase  activity  and  therefore   active  vitamin  D  are  increased  to  signal  the  intestine  to   increase  calcium  absorption     o PTH  can  also  signal  reabsorption  of  calcium  from  filtrate     o Only  10%  of  calcium  filtered  daily  is  excreted  à  Most  is   reabsorbed   • Intestine:   -­‐ There  are  many  ways  to  increase  the  uptake  of  calcium  absorption     -­‐ Transporters  on  the  apical  and  basolateral  side  of  the  enterocyte  bind   calcium     -­‐ Vitamin  D  up  regulates  transporters     -­‐ *Consumption  of  a  lot  of  calcium  à  expression  and  uptake  of  calcium  is   relatively  lower  vs.  a  dairy  free  person  where  the  expression  of  proteins   increases  and  relative  uptake  if  higher   Phosphorus     • Uses:   -­‐ Formation  of  ATP  and  transferring  high  energy  phosphate  groups  à  AKA   trapping  nutrients  inside  cells   -­‐ Ex:  Phosphorylation  of  glucose     -­‐ Used  in  cell  membranes  with  phosphoglycerides  and  phosphatidyl   choline   -­‐ Regulation  of  metabolism  à  Phosphorous  cascade  of  any  number  of   enzymes  helps  to  regulate  metabolic  pathways     • Thyroid  gland:   -­‐ Opposite  of  calcium  occurs:  Increased  plasma  phosphorous  à  Increase  of   PTH  production  to  ultimately  reduce  phosphorous  in  the  blood   -­‐ PTH  signals  the  kidney  to  illicit  a  number  of  different  changes:   a) Reabsorption  of  phosphorous  is  decreased  so  that  it  is  excreted     b) Decrease  in  1-­‐a-­‐hydroxylase  and  an  increase  in  24-­‐hydroxylase     • PTH  acting  on  the  intestine:   -­‐ Decrease  phosphorous  absorption     -­‐ Due  to  vitamin  D  signaling  à  Reduces  phosphorus  transporters  and   therefore  reduction  in  the  uptake  and  absorption  of  phosphorous  to   effectively  reduce  concentration  in  the  blood     Slide  5:  Osteoclastogenesis  vs.  osteoblast-­‐mediated  regulation   • Bone  metabolism  shown     • At  the  bottom  of  the  figure  is  bone   • Compounds  in  the  pro-­‐resorptive  and  calciotropic  factors  box  +  anti-­‐ resorptive  or  anabolic  factors  box  à  Signaling  compounds  (Ligands)  for   each  that  will  inform  cells,  bone,  etc.  what  should  be  occurring     • Osteoblasts:   -­‐ Function  to  be  on  the  anabolic  side  in  laying  down  mineral  in  bone     -­‐ Increases  the  mineral  content  of  bone   -­‐ *Osteoclasts  (What  is  looked  at  here)  remove  mineral  from  bone     • Progenitor  cell  (Precursor  cell)  à  Preosteoclast  à  Mature  osteoclast  à   Activated  osteoclast   -­‐  If  there  is  an  osteoclast  progenitor  cell  +  RANK  on  the  cell  à  Ligands  in   boxes  are  where  they  bind  to  RANK  à  Stimulation  or  inhibition  of   maturation  and  activation  of  osteoclasts  (Depends  on  the  ligand)   • Pro-­‐resorptive  and  calciotropic  factors:     -­‐ Starting  with  the  preosteoclast:  Cascade  that  signals  the  maturation  of   becoming  an  osteoclast  à  Later  activated  osteoclast     -­‐ Factors  work  with  RANKL  (Ligand  for  RANK  receptor  that  is  an  activator   of  nuclear  factor  kappa  beta)  and  pRANKL  (Ligand  carried  within  the   plasma)  à  Signal  for  the  maturation  and  activation  of  osteoclast  to  break   down  bone  mineral  density   -­‐ Ligands  that  bind  to  RANK  to  promote  osteoclast  formation:   o Vitamin  D  (1,25-­‐dihydroxyvitamin  D):   § Active  vitamin  D  increases  the  concentration  of  calcium  in   the  blood  by  increasing  the  absorption  in  the  intestine,   increase  reabsorption  in  the  kidneys,  and  increase   reabsorption  from  bone   o PTH   o PTHrP   o IL1   o IL6   o TNF   o Corticosteroids   o Prolactin   • Anti-­‐resorptive  or  anabolic  factors:   -­‐ Factors  work  with  OPG  to  inhibit  osteoclast  maturation  and  activation  à   Ultimately  inhibits  the  removal  or  absorption  of  calcium  from  bone   -­‐ Ligands  that  bind  to  OPG  for  inhibiting  osteoclast  formation:     o Calcium:     § When  consuming  calcium,  it  is  not  needed  to  be  taken  out   of  bone  because  there  is  another  pathway  available  for   increasing  the  concentration  of  calcium  in  the  blood   o Estrogens:   § Before  25,  estrogen  is  very  beneficial  in  depositing  bone   mineral  density     § Less  available  after  menopause  à  Bone  mineral  density   drops  off   o Calcitonin   o BMPs   o TGFB   o PDGF   Slide  6:  Figure  32.5-­‐  Calcium  and  phosphorous  balance  in  normal  physiology   • Absorption  of  calcium  and  phosphorous  shown     • Calcium:   -­‐ 300  mg  of  1,000  mg  consumed  will  be  absorbed  into  the  extracellular   fluid   -­‐ 150  mg  of  endogenous  calcium  can  be  moved  from  the  extracellular  fluid   to  the  GI  tract   -­‐ Why  there  is  a  net  absorbance  of  150  mg  of  calcium     -­‐ 850  mg  of  calcium  exits  in  the  feces  à  Accounts  for  what  was  not   absorbed  from  the  diet  +  the  endogenous  calcium  that  was  lost     -­‐ Extracellular  fluid  pool  of  1000  mg  of  calcium:   o From  the  extracellular  fluid  pool  à  Formation  of  hydroxyapatite:   Depositing  of  mineral  into  bone   o Resorption  of  calcium  from  bone  à  extracellular  fluid  pool  to   maintain  blood  calcium  concentrations     § Regulator  of  calcium  =  Blood     o 2%  of  calcium  is  excreted  via  urine       • Phosphorous:   -­‐ 700  mg  of  phosphorous  is  consumed  per  day   -­‐ A  greater  amount  is  consumed  than  calcium  (550  mg)  into  the   extracellular  fluid   -­‐ 150  mg  of  endogenous  phosphorus  is  sloughed  off  into  the  GI  tract     -­‐ Net  absorption  of  400  mg  into  the  extracellular  fluid  pool     -­‐ 10%  is  excreted  via  urine   Slide  7:  Model  of  para-­‐cellular  and  trans-­‐cellular  calcium  transport     • Para-­‐cellular  transport:  Between  cells   • Trans-­‐cellular  transport:  Nutrient  transporters  on  membranes  in  a  cell   remove  calcium  from  the  lumen  of  the  intestine  into  circulation  through  cells   • In  the  intestine:   -­‐ Duodenum   o 20%  of  calcium  absorbed  goes  through  para-­‐cellular  transport   o 80%  of  calcium  absorbed  goes  through  trans-­‐cellular  transport   -­‐ Jejunum   o 80%  of  calcium  absorbed  goes  through  para-­‐cellular  transport   o 20%  of  calcium  absorbed  goes  through  trans-­‐cellular  transport   -­‐ Ileum   o 100%  of  calcium  absorbed  goes  through  para-­‐cellular  transport   • AKA:  Trans-­‐cellular  transport  is  highest  in  the  duodenum  but  drops  off   towards  the  jejunum  and  ileum   -­‐ Proximal  portion  of  the  small  intestine  is  where  the  calcium  is  taken  up   through  trans-­‐cellular  means   • Uptake  of  nutrients  is  largely  dependent  at  different  points  where  proteins   are  expressed  at  those  points   • Apical  side  of  enterocyte:   -­‐ TRPB6  and  TRBP5:  Calcium  transporters  that  can  facilitate  the  transport   of  calcium  across  the  plasma  membrane  (Trans-­‐cellular  transport)   • Cytoplasm:   -­‐ Calbindin:  Calcium  binding  protein  that  moves  calcium  across  the   cytoplasm  from  the  apical  side  to  the  basolateral  side  of  the  enterocyte   • Basolateral  side  of  enterocyte:  2  pathways  for  transporting  calcium   a) NCX1:  Sodium  calcium  transporter   b) PMCA1:  Energy  dependent  calcium  transporter   • 1,25-­‐dihydroxyvitamin  D:   -­‐ Functions  to  increase  the  concentration  of  calcium  in  the  blood   -­‐ Signals  the  enterocyte  to  increase  the  uptake  and  absorption  of  calcium   by  increasing  the  expression  of  these  proteins   -­‐ Steps:  Enters  the  enterocyte  and  attaches  to  ultimately  to  VDR-­‐RXR   nuclear  receptor  complex  à  Response  element  of  DNA  à  Production  of   mRNA  à  Proteins  expressed  to  take  up  calcium:  TRBP6,  NCXI,  and   calbindin     Slide  8:  Percentage  of  Calcium  Absorbed  and  total  Calcium  Absorbed  from  Various   Food  Sources   • In  terms  of  rate  of  absorption  vs.  absolute  mass  being  absorbed   • Whole  wheat  bread  is  one  of  the  best  sources  of  calcium  absorption  (%   calcium  absorption)  BUT  the  total  calcium  absorbed/absolute  amount  of   calcium  taken  up  is  very  low     • Milk  or  yogurt:   -­‐ %  of  absorption  of  calcium  is  not  greatà  Only  25%   -­‐ Total  calcium  amount  is  very  high  à  80-­‐90  mg   • Overall:  When  looking  at  minerals,  it  is  important  to  recognize  the  rate  of   absorption  vs.  total  mass  of  the  nutrient  that  is  absorbed—Just  because   something  says  100%  absorbed  does  not  mean  that  a  ton  (mg)  is  actually  put   into  the  body   • If  a  lot  of  calcium  is  absorbed  (Or  any  mineral),  the  rate  of  absorption  will  be   lower   • If  a  little  amount  of  calcium  is  absorbed,  the  rate  of  absorption  is  higher       Magnesium     Slide  3:  Figure  33.1   • Intestinal  uptake  of  magnesium  is  shown     • Apical  side  of  the  enterocyte  (Left):   -­‐ Have  TRPM6  transporter   -­‐ Used  for  the  trans-­‐cellular  uptake  of  magnesium     • Movement  of  magnesium  through  the  cytoplasm  is  next   • Basolateral  side  of  the  enterocyte  (Right):   -­‐ 2  transporters  that  transport  magnesium  into  the  plasma     a) Sodium  co-­‐transporter   b) Mystery  transporter   • Between  2  cells:  Claudin-­‐16/19   -­‐ Facilitates  para-­‐cellular  uptake  and  absorption  of  magnesium     -­‐ Work  to  regulate  the  movement  of  magnesium  and  other  nutrients   between  cells   Slide  4:  Figure  33.2-­‐  Summary  of  the  Tubular  Handling  of  Magnesium     • Kidneys  shown  along  with  the  secretion  and  absorption  of  magnesium  à   One  of  the  primary  pathways  for  maintain  magnesium  concentrations  in  the   blood     • 100%  of  80%  of  magnesium  from  the  body  that  enters  the  glomerulus  enters   the  proximal  convoluted  tubule     • Ascending  limb  of  Loop  of  Henle:   -­‐ Where  most  (60-­‐75%)  of  filtered  magnesium  is  reabsorbed  here     • Distal  convoluted  tubule:   -­‐ 5-­‐10%  of  the  filtered  magnesium  is  reabsorbed  here     • 3-­‐5%  of  magnesium  that  was  filtered  is  excreted  in  the  urine  once  it  reaches   the  collecting  duct   • Overall:  Most  magnesium  is  reabsorbed  back  into  to  the  blood  stream     Slide  5:  Skipped   Slide  6:  Figure  33.4-­‐  Distribution  of  Magnesium  in  the  Body   • Soft  tissues:  45%  (450  mmol)  of  magnesium     -­‐ Functions  in  stabilizing  phosphate  groups  of  ATP   -­‐ Any  time  there  is  an  enzyme  or  protein  that  binds  to  or  uses  ATP,  it  will   use  magnesium  as  a  cofactor     -­‐ Ex:  Succinyl  CoA  dehydrogenase  will  convert  GDP  à  GTP  and  it  donates  a   phosphate  group  to  ADP  à  ATP   -­‐ Role  of  soft  tissues  in  the  body:  To  generate  or  maintain  energy  for  the   body     o Ex:  Adipose  tissue   o Kidneys     o Liver   • Skeleton:  54%  (540  mmol)  of  magnesium   -­‐ Magnesium  in  bone:   o Is  part  of  the  hydroxyapatite  à  Crystalline  structure  that  makes   up  bone   • Extracellular  fluid:  1%  (10  mmol)  of  magnesium     • Pretty  even  distribution  between  tissue  and  bone   Slide  7:  Figure  33.5   • Function  of  magnesium  is  to  stabilize  phosphate  groups   • It  is  associated  with  the  oxygens  on  the  phosphate  groups  in  ATP  and  ADP   • ATP  has  a  negative  charge  (Anion)  à  Magnesium  helps  keep  this  molecule   stable  in  the  cell  so  that  when  enzymatic  reactions  are  occurring,  they  are   much  more  stable  reactions  (Won’t  bind  an  enzyme)   • Specifically:  Magnesium  stabilizes  the  beta  and  gamma  phosphate  groups  on   ATP   Slide  8:  Figure  33.6   • Magnesium  is  going  to  help  stabilize  any  reaction  that  uses  ATP  and  GTP  in   this  case   • Shows  2  ways  that  lead  to  intracellular  signaling  where  magnesium  plays  a   role   • Left  side:  cAMP  Mechanism   -­‐ Hormone  binds  and  activates  a  G  protein  coupled  receptor  à  Activates   adenylate  cyclase  à  Buildup  of  cAMP  à  Increase  in  PKA  (Protein  kinase   A)  +  downstream  functions  that  depend  on  the  hormone  that’s  binded   such  as  gluconeogenesis   • Right  side:  Another  cell  signaling  pathway     -­‐ Uses  PI  where  a  hormone  binds  to  a  G  protein  coupled  receptor  à   Phospholipase  C  acts  to  stimulate  downstream  pathways  à  Ultimately   turns  on  protein  kinase  C     Slide  9:  Figure  19.7   • Glucagon  shown  as  a  hormone  attaching  to  a  G  protein  coupled  receptor  (7   transmembrane  G  protein  couple  receptor)  à  Stimulate  adenylate   cyclase  to  produce  cAMP  (Secondary  messenger)  à  Increase  PKA  (Protein   kinase  A)     Sodium  and  Potassium     Slide  1:  Figure  34.1-­‐  Ionic  composition  of  plasma,  interstitial,  and  intracellular   compartments     • Electrolytes:  Charged  molecules  (Sodium  and  potassium  have  charges)   • Electrolytes  work  in  proton  gradients     -­‐ There  is  a  difference  in  charge  between  inside  and  outside  cell   membranes     -­‐ The  extracellular  compartment  outside  of  cell  has  a  more  positive  charge   than  inside  the  cell  where  there  is  a  more  negative  charge  à  This  creates   a  resting  membrane  potential     • Any  time  there  is  an  excitability  of  a  neuron  and  there  is  a  need  to  stimulate  a   muscle,  there  is  an  interaction  between  the  resting  membrane  potential  à   The  change  in  resting  membrane  potential  is  used  to  initiate  movement     • What  causes  the  difference  between  inside  and  outside  a  cell:   -­‐ In  the  plasma:   o The  principle  electrolyte  is  sodium  so  that  there  is  more  sodium   outside  the  cell     o Sodium  is  110  mmol/L  in  the  blood   o Potassium  is  4  mmol/L  outside  the  cell     o Also  in  the  plasma:  Magnesium,  organic  acids,  and  proteins     -­‐ In  the  interstitial  fluid:   o Similar  to  the  plasma  but  has  slightly  more  sodium  present   o Also  in  the  interstitial  fluid:  Bicarbonate,  chlorine,  and  a  fairly   even  number  of  potassium  and  calcium     -­‐ Intracellular  compartment  (Inside  the  cell):   o The  principle  electrolyte  is  potassium     o Also  in  the  intracellular  compartment:  More  organic  phosphates   like  ATP  phosphates,  more  proteins,  more  magnesium  (Needed  to   help  stabilize  ATP  and  ADP),  less  sodium  and  chloride     o Potassium  is  150  mmol/L   o Sodium  is  12  mmol/L   -­‐ *Sodium-­‐potassium  ATPase  is  what  creates  this  charge  across  the   plasma  membrane     Slide  2:  Figure  34.2-­‐  Schematic  representation  for  sodium-­‐potassium  ATPase   • Sodium-­‐potassium  ATPase:  Responsible  for  primary  active  transport  of   sodium  and  potassium  in  opposite  directions  across  plasma  membranes     • It  is  a  protein  that  is  a  heterodimer  with  2  alpha  subunits  and  2  beta   subunits  that  spans  the  plasma  membrane   • Steps  for  sodium-­‐potassium  ATPase:   1) Transporter  protein  picks  up  3  sodium  molecules     2) ATP,  under  the  guidance  of  magnesium,  will  phosphorylate  one  of  the   residues  on  the  alpha  subunit  of  sodium-­‐potassium  ATPase   -­‐ After  the  alpha  subunit  is  phosphorylated,  ADP  is  created  which  releases   sodium  into  the  extracellular  space  to  move  it  out  of  the  cell   3) 2  potassium  molecules  will  be  picked  up     4) De-­‐phosphorylation  of  residues  occurs  +  2  potassium  molecules  are  taken   up  into  the  cell     • Ultimately:   -­‐ 3  sodium  molecules  (positive  charges)  are  taken  out  of  the  cell  per  1  ATP   -­‐ 2  potassium  molecules  (negative  charges)  are  brought  back  into  the  cell   per  1  ATP   -­‐ Sodium-­‐potassium  ATPase  is  used  to  maintain  the  resting  membrane   potential  since  a  difference  is  desired  across  the  membrane     • Later:   -­‐ There  are  channels  that  can  direct  sodium  and  potassium  inside  the  cell   via  electrochemical  gradient   -­‐ The  more  negative  charge  of  potassium  will  cause  sodium  to  flow  down   towards  it  since  sodium  has  a  positive  charge  à  AKA  the  more  positive   charge  of  sedum  is  attracted  to  the  more  negative  charge  of  potassium   inside  the  cell  so  that  sodium  moves  in     Slide  5:  Figure  33.6-­‐  Physiological  regulation  of  sugar  absorption     • In  addition  to  sodium  playing  a  role  in  creating  a  resting  membrane   potential,  it  is  involved  in  carbohydrate  metabolism  as  a  sodium-­‐glucose   transporter   • Sodium-­‐glucose  transporter  facilitates  the  uptake  of  glucose   • SGLT1  (Sodium  glucose  transporter  1)  is  present  in  conditions  of  a  low-­‐ sugar  meal  and  sugar-­‐rich  meal     -­‐ Located  on  the  apical  side  of  the  enterocyte  and  takes  up  glucose  from   the  lumen  of  the  small  intestine     -­‐ Every  time  SGLT1  takes  up  a  molecule  of  glucose,  2  sodium  molecules  are   also  taken  up     -­‐ Sodium  is  ultimately  taken  up  from  a  higher  concentration  to  a  lower   concentration  à  Want  to  keep  sodium  higher  on  the  outside  of  the  cell   than  inside  though     • If  sodium  is  being  shuttled  inside  the  cell  along  with  glucose,  ATPase  is   needed  to  get  sodium  back  out  of  the  cell     -­‐ Energy  (ATP)  is  now  being  used  to  pump  sodium  out  against  its   concentration  gradient     -­‐ ATP  needs  to  be  around  to  maintain  a  resting  membrane  potential  à   Push  sodium  out  and  bring  potassium  back  into  the  cell     -­‐ More  ATPases  will  be  seen  on  the  basolateral  side  of  the  enterocyte  than   the  apical  side     Slide  6:  Figure  34.3   • Potassium  has  a  greater  concentration  inside  the  cell     • Sodium  has  a  greater  concentration  on  the  outside  of  the  cell  in  the   interstitial  fluid   • Apical  side  of  the  enterocyte:   -­‐ Have  different  transporters   -­‐ Sodium-­‐glucose  transporter  is  shown   -­‐ There  is  a  co-­‐transporter  with  facilitated  diffusion  that  moves  sodium   and  potassium  inside  the  cell     o Facilitated  diffusion  of  chlorine  moving  inside  the  cell  is  shown  as   well     -­‐ NaCl:   o Chlorine  will  be  piggy-­‐backed  to  sodium  when  NaCl  is  absorbed   (facilitated  diffusion)   o Chlorine  can  also  use  the  para-­‐cellular  pathway  and  go  in   between  cells     -­‐ Counter  transporter  shown  where  sodium  is  moved  into  the  cell  and  H+   are  moved  out   • Basolateral  side  of  the  enterocyte:   -­‐ Sodium-­‐potassium  ATPase  à  Creates  resting  membrane  potential     -­‐ Sodium-­‐potassium  channels  are  important  in  making  action  potentials   à  AKA  these  are  voltage  gated  channels  for  sodium  and  potassium   Slide  7:  Figure  9.4-­‐  Amino  Acid  Transporters   • As  nutrients  such  as  glucose  and  sodium  are  taken  up  into  a  cell,  sodium   needs  to  be  pumped  back  out  through  ATPase  (3  at  a  time)   -­‐ For  every  ATP,  2  potassium  molecules  are  pumped  back  into  the  cell   -­‐ Multiple  ATPases  are  located  throughout  the  plasma  membrane   • Amino  acid  transporter  and  co  transport  of  sodium:   -­‐ Sodium  is  now  needed  for  the  uptake  of  amino  acids  in  addition  to   carbohydrate  such  as  glucose  and  fructose   • One  can  be  sodium  deficient  due  to  excessive  sweating  and  excessive   vomiting   • Americans  consume  about  6  g  of  sodium  per  day  (US  is  not  sodium  deficient)     Slide  8:  Figure  34.4-­‐  Reabsorption  of  sodium,  potassium,  and  chlorine  and  secretion   of  potassium  at  different  parts  of  the  nephron   • Kidney:   -­‐ Cortex  region   -­‐ Medulla  region   -­‐ Nephron   -­‐ Kidney’s  job  is  to  filter  blood   • Proximal  convoluted  tubule:   -­‐ Reabsorbs  sodium,  chlorine,  and  potassium   • Filtrate  that  flows  through  the  ascending  limb  of  the  Loop  of  Henle  à  By  the   time  it  reaches  the  collecting  duct,  about  90%  of  the  electrolytes  have  been   reabsorbed       • When  excess  sodium  is  consumed,  there  is  less  reabsorption  of  sodium  due   to  adequate  intake     • Also  for  chlorine  and  potassium,  not  much  will  be  reabsorbed  is  adequate   intake  is  met     • At  the  collecting  duct:  95%  of  what  has  been  filtered  is  reabsorbed     • Baroreceptors  help  the  kidney  to  sense  changes  in  blood  volume  that  can   signal  nephrons  to  reabsorb  or  not  reabsorb  certain  electrolytes  depending   on  the  status  of  the  individual     • The  amount  of  water  one  drinks  affects  what  will  affect  the  reabsorption  of   electrolytes  à  Depends  on  blood  volume  and  how  much  sodium,  chlorine   and  potassium  are  being  taken  up  (All  work  together)     • Leftover  filtrate  that  is  not  reabsorbed  à  Bladder  to  be  excreted   Slide  9:  Figure  34.5-­‐  Schematic  representation  of  the  control  of  renal  excretion  of   sodium  and  water  during  salt  deficit     • Baroreceptors  are  found  in  the  distal  convoluted  tubule  next  to  Bowman’s   capsule  where  changes  in  blood  volume  can  be  sensed  and  signals  are  sent  to   the  CNS   • Decrease  in  plasma  volume  and  therefore  a  decrease  in  blood  pressure   can  be  sensed  by  baroreceptors:   -­‐ Signals  sent  to  the  CNS  that  will  lead  to  activate  sympathetic  nervous   activity:   a) Increase  in  renin  secretion  by  the  kidneys  +  the  cells  within  the   kidneys  that  house  renin   o Renin:  Pro-­‐hormone  à  Stimualtes  angiotensin  mechanism  where   angiotensinogen  (Angiotensin  in  notes?)  à  angiotensin  1  à   angiotensin  2  via  ACE  (Angiotensin  converting  enzyme)  secreted   from  the  lungs   o Angiotensin  2  will  act  on  the  adrenal  glands  to  cause  the   production  of  aldosterone  that  will  also  act  to  increase  blood   pressure  and  increase  plasma  volume  through  stimulating  sodium   reabsorption     o Aldosterone  acts  on  the  distal  convoluted  tubule  to  promote   sodium  and  chlorine  reabsorption     b) Decrease  in  glomerular  filtration  rate:     o GFR:  Rate  of  filtrate  that  enters  Bowman’  capsule     o As  GFR  decreases,  signals  will  be  sent  to  the  CNS  that  will  cause  a   release  of  an  enzyme  that  will  activate  the  cascade  of  events   c) AVP  (ADH):   o AKA  arginine  vasopressin  hormone     o Released  from  the  pituitary  gland     o Functions  in  helping  water  to  be  reabsorbed  into  the  blood  stream   from  the  tubule  via  opening  aquaporins     d) Water  can  be  reabsorbed  also  in  the  colon  that  helps  regulate  blood   pressure,  plasma  volume,  and  sodium  retention     • Summary:   -­‐ Anytime  there  is  low  sodium  or  decrease  in  plasma  volume  à  Renin  is   released  from  the  kidney  à  Signals  the  conversion  of  angiotensinogen   (Angiotensin  in  notes?)  à  Angiotensin  1  à  Angiotensin  2  via  ACE  from   the  lungs  à  Increase  in  plasma  levels  of  aldosterone  à  Act  on  the   kidneys  to  reabsorb  sodium  and  chloride   -­‐ Ultimately  increasing  blood  volume  and  therefore  blood  pressure     Body  Fluids  and  Water  Balance     Slide  2:  Figure  35.1-­‐  Major  Fluid  Compartments  of  an  Adult   • Extracellular  fluid:   -­‐ Cavity  fluids:  <  2%   o Hollow  tubes  +  fluid  within  the  tube   o Most  is  made  up  by  the  GI  tract  due  to  water   -­‐ Plasma:  4%  (3L)   -­‐ Interstitial  fluid:  16%  (11  L)   • Intracellular  fluid:   -­‐ 40%  (28  L)   -­‐ Most  of  the  fluid  in  our  body  is  contained  within  our  cells   • In  any  of  these  compartments,  the  fluid’s  function  is  to  facilitate  enzymatic   reactions,  maintain  electrolyte  balance,  transport  function,  temperature   regulation,  etc.   -­‐ Primary  objective  though:  Water  that  acts  as  a  solvent  that  dissolves   solutes  like  electrolytes  so  that  they  are  distributed  throughout  the  body   (Water  acts  as  a  carrier  in  the  blood)   Slide  3:  Figure  35.2-­‐  Osmosis  and  osmotic  pressure  illustrated  by  two  compartments   separated  by  a  semipermeable  membrane,  permeable  to  water  but  not  to  solutes   • Semi-­‐permeable  membrane:   -­‐ Allows  some  substances  through  and  not  others   -­‐ Water  is  allowed  to  freely  pass   -­‐ Dissolved  solutes  such  as  sodium  and  chloride  are  not  allowed  through     • Top:     -­‐ U-­‐shaped  vessel  with  semipermeable  membrane  between  sides  A  and  B   -­‐ Side  A  is  more  concentrated  than  side  B,  but  the  volume  is  same  on  both   sides   -­‐ The  concentration  of  solute  will  remain  the  same  on  both  sides  since  the   solutes  aren’t  allowed  to  pass  through  the  membrane  à  It  is  the  volume   of  water  (Fluid)  that  changes  and  therefore  the  osmolarity  can  change   -­‐ Dashed  arrows:  Movement  of  water  (fluid)   -­‐ Solid  arrows:  Pressure  opposing  water  movement   • Bottom  left  in  terms  of  top  image:   -­‐ Net  movement  of  water:     o Water  moves  from  side  A  à  side  B   o AKA:  Water  passes  from  side  A  (Area  of  less  concentration)  to  side   B  (Area  of  higher  concentration)   -­‐ Osmotic  process  shown  à  Goal  is  to  create  an  equilibrium  to  have  the   same  concentration  of  solutes  on  both  sides     o Even  though  there  are  5  Osm  of  solute  on  side  A  and  15  Osm  of   solute  on  side  B,  water  volume  changes  so  that  side  A  now  has  0.5   L  of  fluid  and  side  B  has  1.5  liters  of  fluid  à  Ultimately  an  equal   osmolarity  value  of  10  Osm/L  is  created  (Equilibrium)   • Bottom  right  in  terms  of  top  image:   -­‐ Solid  arrow  points  down  on  side  B  à  Represents  opposing  pressure     -­‐ Less  concentration  of  solute  is  on  side  A  than  B   -­‐ 1  L  of  water  is  on  both  A  and  B   -­‐ There  will  not  be  a  net  movement  of  water  from  side  A  to  side  B  due  to   the  pressure  opposing  water   • Figure  shows  open  vessel  examples,  but  in  mammals  they  are  closed   systemsà  Cells   -­‐ If  have  a  cell,  pressure  opposing  water  movement  is  likely  the  cell  wall     -­‐ There  is  ability  of  a  cell  wall  to  expand  and  contract,  but  it  is  limited   movement     Slide  4:     Slide  5:  Illustration  of  Starling  forces  across  the  capillary  endothelium   • Capillary  with  arteriole  and  venous  sides     • Movement  from  the  arteriole  to  the  venous  side  à  Filtration  movement  will   occur  from  the  lumen  of  the  capillary  into  the  interstitial  space  (On  the   arteriole  side)   -­‐ Assumption  is  this  is  the  delivery  system  for  nutrients  and  oxygen   • Venous  side:   -­‐ Wastes  are  removed  from  the  cell  on  the  venous  side     -­‐ Movement  from  the  interstitial  space  into  the  lumen  of  the  capillary   • 4  pressures  affecting  fluid  movement:   a) Capillary  hydrostatic  pressure:  P   c -­‐ AKA  blood  pressure   -­‐ Pushes  fluid  into  the  interstitial  space   b) Capillary  colloid  osmotic  pressure:  O   c -­‐ Resistive  to  fluid  leaving  the  lumen  à  interstitial  space   -­‐ Has  to  do  with  proteins  that  are  contained  within  a  solvent     -­‐ Plays  a  role  in  filtration     -­‐ Draws  fluid  back  towards  the  lumen  of  the  capillary  since  proteins  can’t   pass  out  of  the  capillary   -­‐ Ex:  Albumin  à  1  protein  contained  within  the  water  solvent  in  the   plasma     c) Interstitial  hydrostatic  pressure:  P   If -­‐ Pushes  fluid  from  the  interstitial  space  into  the  lumen  of  the  capillary     d) Interstitial  colloid  osmotic  pressure:  O   If -­‐ Pulls  fluid  into  the  interstitial  space   -­‐ Also  relates  to  proteins  (?)   • Net  filtration  pressure:   -­‐ NFP  =  (P c   If    – c  ­If  O )   -­‐ AKA:  (Capillary  hydrostatic  pressure  –  Interstitial  fluid  hydrostatic   pressure)  –  (Capillary  colloid  osmotic  pressure  –  Interstitial  fluid  colloid   osmotic  pressure)     • If  net  filtration  pressure  is  positive:  Movement  from  the  lumen  of  the   capillary  to  the  interstitial  space     • If  net  filtration  pressure  is  negative:  Movement  from  the  interstitial  space   back  into  the  lumen  of  the  capillary     • Filtration:     -­‐ Movement  of  solutes  filtered  from  the  capillary  to  the  interstitial  space   • Reabsorption:   -­‐ Movement  from  the  interstitial  space  to  the  lumen  of  the  capillary     • There  is  a  difference  between  the  arteriole  and  venous  ends  in  terms  of   filtration  and  reabsorption     • Disease  conditions:   -­‐ Reabsorption  inhibited  à  Fluid  will  be  in  the  interstitial  fluid  à  Build  up   =  Edema     Slide  6:  Daily  water  balance  to  illustrate  minimal  required  drinking  water  intake   • Water  intake:  1.44   -­‐ Preformed  water:  0.85  L   -­‐ Metabolic  water:  0.37  L   o From  products  of  respiration  at  the  end  of  the  ETC  when  oxygen  is   reduced  to  water     -­‐ Drinking-­‐minimum:  0.22  L   • Water  loss:  1.44  L     -­‐ Insensible  water  loss  in  the  lungs  (0.3  L)   -­‐ Insensible  water  loss  in  the  skin  when  not  purposely  sweating  (0.4  L)   -­‐ Feces:  0.1  L   -­‐ Urine:  0.64  L   • Recommended  to  drink  8  cups  of  water  a  day,  but  based  on  this  table,  we   only  need  to  take  in  0.22  due  to  fluid  balance   Slide  7:  Figure  35.5-­‐  Establishment  of  an  osmotic  gradient  in  the  medullary  region  of   the  kidney  by  the  countercurrent  multiplier  system  of  the  Loop  of  Henle   • Nephron  is  the  structural  unit  of  the  kidney   -­‐ The  concentration  of  filtrate  in  the  proximal  convoluted  tubule  is  much   less  concentrated  than  as  the  filtrate  moves  down  the  descending  limb  of   the  Loop  of  Henle     o The  further  the  descending  limb  goes  into  the  medulla,  the  more   concentrated  the  filtrate       -­‐ As  the  filtrate  moves  back  up  the  ascending  limb,  the  concentration  of  the   filtrate  decreases  and  becomes  more  dilute  again  in  the  distal  convoluted   tubule  and  collecting  duct  like  when  it  first  was  in  the  proximal   convoluted  tubule     -­‐ Filtrate  moving  down  the  collecting  duct  à  Inner  medulla  where  the   filtrate  is  concentrated  more  again     • Function  of  the  nephron  is  to  regulation  the  filtration  and  reabsorption  of   solutes  (And  therefore  water)   • Descending  limb:  Permeable  to  water  and  impermeable  to  solutes  (Such  as   sodium  and  chloride)   -­‐ More  water  moves  out  to  work  to  maintain  equilibrium  as  the   concentration  of  solute  outside  the  tubule  increases     • Ascending  limb:  Impermeable  to  water  and  permeable  to  solutes   -­‐ Moving  up  the  ascending  limb  à  Urea  moves  into  the  nephron   • As  get  to  the  collecting  duct,  some  urea  is  able  to  move  out     Slide  8:  Integration  of  the  osmoreceptor—AVP  and  thirst  mechanisms  in  the   regulation  of  water  balance  in  water  deficit     • Excess  water  loss  à  Negative  water  balance     -­‐ Could  be  due  to  sweating,  breathing,  exercise,  diluting  urine,  etc.     • Excess  water  loss  can  lead  to  an  increase  in  plasma  osmolarity:   a) Concentrations  of  solutes  increased  in  a  solvent  so  that  the  solute   concentration  remain  the  same  but  the  water  volume  decreases     -­‐ Osmoreceptors  sense  this  increase  in  osmolarity  à  Leads  to  the   secretion  of  AVP     -­‐ AVP  (Arginine  Vasopressin  =  ADH)  à  Increases  water  reabsorption     b) Signal  of  a  thirst  sensation  to  increase  the  intake  of  water  or  fluid   -­‐ 1%  of  one’s  body  weight  of  fluids  is  lost  before  signifying  the  thirst   sensation     • Baroreceptors  respond  to  pressure  à  If  there  is  a  decrease  in  plasma   volume:   -­‐ AVP  signaled  to  increase  water  reabsorption     Slide  9:  Proposed  mechanism  of  some  major  events  that  result  from  the  action  of   AVP  on  the  collecting  tubule  to  increase  its  water  permeability   • AVP  (ADH):  Use  of  a  secondary  messenger  system     -­‐ Hormone  that  binds  to  AVP-­‐receptor  à  Activates  adenylate  cyclase  to   generate  cAMP    (Secondary  messenger)  à  Activates  protein  kinase  that   phosphorylates  substances  (Covalent  regulation)  à  Translocation  of  a   vesicle  with  aquaporin  2  inside  to  the  cell  membrane  à  Aquaporins  are   embedded  in  the  cell  membrane  to  allow  the  transport  of  water  across   the  membrane     • Apical  side:  Aquaporin  2  presence   • Basolateral  side:  Aquaporins  3  and  4  present  that  transport  water   • Dashed  lines  on  the  apical  side:  Means  there  will  be  some  removal  of  the   protein  from  the  membrane  +  recycling  so  that  is  goes  back  into  one  of  the   intracellular  vesicles   -­‐ Faster  to  already  have  the  aquaporins  in  cells  ready  for  when  they  are   needed  rather  than  using  signaling  of  synthesis  of  aquaporin  proteins       Iron       Slide  3   • Heme  compound  shown     • Ex:  Hemoglobin  and  myoglobin   • Fe  2+  à  Ferrous  form  of  iron  (Middle  of  this  heme  compound)   • Fe  3+  à  Ferric  form  of  iron   • Ferrous  form  (Fe  2+)  is  more  highly  reduced  than  the  ferric  form  (Fe  3+)  à   AKA  the  difference  between  the  two  has  to  with  a  loss  or  gain  of  electrons   • Relation  à  ETC:  Purpose  is  to  move  electrons  through  the  ETC  from  the   matrix  of  the  mitochondria  to  the  inner  membrane  space     Slide  4:  Figure  36.2-­‐  Iron-­‐Sulfur  Cluster  Proteins   • 2  proteins  shown  that  contain  iron  and  sulfur   • Interaction  between  iron  and  sulfur  is  key   • Left  protein:   -­‐ Contains  2  iron  and  2  sulfur   • Right  protein:   -­‐ Contains  4  iron  and  4  sulfur   • In  either  of  these  proteins  à  There  is  the  cysteine  AA     • Cysteine  importance:   -­‐ One  of  the  sulfur  containing  AA  (Other  is  methionine)   -­‐ Both  proteins  use  cysteine  to  anchor  the  iron-­‐sulfur  cluster  within  the   protein   -­‐ Iron  bound  to  sulfur  on  cysteine  +  2  more  sulfur  molecules  can  bridge  the   gap     o AKA  there  is  an  iron-­‐sulfur  cluster  within  a  protein  and  2  other   sulfur  molecules  can  bridge  2  sides  of  the  protein     • Hemoglobin  and  myoglobin  involve  iron  and  play  an  important  role  in   metabolism   -­‐ Their  function  is  to  carry  oxygen  in  the  blood  (hemoglobin)  and  in  the   muscle  (myoglobin)   -­‐ Iron  works  to  bind  to  and  transport  the  oxygen     • Proteins  in  the  ETC:   -­‐ Coenzyme  Q,  succinate  dehydrogenase,  ATP  synthase,  cytochrome  B  and   C     -­‐ Cytochromes  C  and  B  à  Where  there  is  primarily  iron-­‐sulfur  clusters  to   allow  REDOX  reactions  to  occur   -­‐ Again:  Cytochromes  work  to  move  electrons  through  the  ETC  to   ultimately  reduce  oxygen  to  water  and  create  ATP  from  ADP  and   inorganic  phosphate   Slide  5:  BOX  36-­‐2-­‐  Proteins  involved  in  Iron  Transport,  Storage,  and  Recycling   • Proteins  involved  in  transport,  storage,  and  recycling  are  listed   • Ex:  Lactoferrin  and  transferrin   • Transferrin  binding  proteins:   -­‐ Transferrin  receptor  1  and  2:     o Principle  protein  for  iron  uptake   o Transferrin  is  responsible  for  transporting  iron  in  circulation   o Transferrin  binds  to  the  transferrin  receptor  so  that  the  iron  can   be  taken  up  into  a  cell  and  used,  stored,  or  recycled     • Proteins  of  iron  recycling:   -­‐ Ceruloplasmin:   o Second  compound  that  functions  to  convert  iron  in  the  ferrous


Buy Material

Are you sure you want to buy this material for

50 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Bentley McCaw University of Florida

"I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"

Amaris Trozzo George Washington University

"I made $350 in just two days after posting my first study guide."

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Parker Thompson 500 Startups

"It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.