New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Bio 1362

by: Manaswini Mattegunta

Bio 1362 BIO 1362

Manaswini Mattegunta

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

Dr. Cheek's review guide answered for Bio Exam 2
Intro to biological sciences
Dr. Cheek
Study Guide
50 ?




Popular in Intro to biological sciences

Popular in Department

This 11 page Study Guide was uploaded by Manaswini Mattegunta on Friday April 29, 2016. The Study Guide belongs to BIO 1362 at University of Houston Downtown taught by Dr. Cheek in Spring 2016. Since its upload, it has received 16 views.

Similar to BIO 1362 at UHD


Reviews for Bio 1362


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 04/29/16
Exam 1 Preparation Guide Chapters 24 – 27, 19, and 11 Concepts Biodiversity – Chapters 24 - 27 ● List characteristics shared by Archaea & Bacteria, but not Eukarya o No nuclear envelope o No membrane bound organelles o One (1) circular chromosome ● List characteristics shared by Archaea & Eukarya, but not Bacteria o No peptidoglycan cell wall o More than 1 (>1) RNA polymerase o Initiator amino acid: methionine o No ribosome assembly sensitive to antibiotics ● List characteristics unique to each domain o Archaea ▪ Extremophiles: can live in harsh environments (salty, hot, freezing) ▪ Methanogens: producers, use CO to oxid2ze H 2 to CH 4 hydrothermal vents, cow and termite guts ▪ Growth at temperatures greater than 100°C o Bacteria ▪ Peptidoglycan cell wall ▪ One (1) RNA polymerase ▪ No introns or histones o Eukaryotes ▪ Nuclear envelope ▪ Membrane bound organelles ▪ No circular chromosomes ▪ Many introns, one histone Histones are proteins that coil with DNA Introns are noncoding DNA sequences   Bacteria Archaea Eukarya nuclear envelope 0 0 1 membrane­bound organelles 0 0 1 circular chromosome 1 1 0 peptidoglycan cell wall 1 0 0 RNA polymerase 1 >1 >1 initiator aa formyl Met Met Met Ribosome assembly sens to an1ibiotics 0 0 growth at > 100°C 0 1 0 membr lipids unbranched hc tail some branched hc taunbranched hc tail introns rare some many histones 0 0/1 1 ● Name the 5 kingdoms within Domain Bacteria and be able to draw a phylogenetic tree showing relationships among the 5 kingdoms o Proteobacteria ▪ Salmonella ▪ - Vibrio ▪ - Helicobacteria pylori ▪ - Rhizobium o Chlamydia o Spiro- parasitic ▪ Barrelia burgdorferi ▪ Treponema pallidum o Cyano=parasitic ▪ lichen o GramPositive ▪ - Streptomyces ▪ - Bacillus antrhacis ▪ - Clostridium botulinum ● Know the kingdom for each species of bacteria listed in lecture ● Know characteristic that differentiates gram-positive and gram-negative bacteria and which kingdoms belong to which category o Gram-positive ▪ No additional membrane covering cell wall ▪ thick layer of peptidoglycan ▪ dark stained ▪ Pathogenic vs. Nonpathogenic o Gram-negative ▪ Proteobacteria ▪ Cell wall, thin layer of peptidoglycan, with additional membrane ▪ Autotrophs (chemo and photo) vs. Heterotrophs can be pathogenic vs. nonpathogenic ▪ Pathogenic vs nonpathogenic ● Name the 4 supergroups within Domain Eukarya and be able to draw a phylogenetic tree showing relationships among the supergroups o Animalia o Fungi o Plant o Charophyte algae ● Know the supergroup to which each single-celled eukaryote listed in lecture belongs ● Explain what the branching pattern on a phylogenetic tree indicates about evolutionary relationships o The branch point represents a pattern of divergence o unknown shared traits ● Compare phylogenetic trees to see if they represent the same or different relationships between groups ● Use a phylogenetic tree to identify which groups descend from a more recent or more ancient common ancestor ● Define the ancestral characteristics that unite the Archaeplastida o Shared with green algae: chlorophyll a and b ● Define the shared derived traits that unite the plant kingdom o Alternation of generations-fertilization o Sporangia- multicellular organs that produce desiccation resistant spores o Gametangia- embryo o Apical meristem- cell division at the tip of the root ● Draw the cycle of alternation of generations – name each generation, indicate ploidy (1n or 2n) and type of cell division that produces the single cells that develop into the next generation ● Name the 7 phyla within Kingdom Plantae and be able to match the name of plants listed in lecture to the correct phylum o Liverworts o Hornworts o Mosses- o Lycophytes o Monilophytes o Gymnosperms o Angiosperms ● Draw a phylogenetic tree showing relationships among the 7 plant phyla ● Draw a phylogenetic tree showing relationships among these animal phyla: Porifera, Cnidaria, Chordata, Mollusca, Annelida, Nematoda, Arthropoda ● Be able to indicate on the phylogenetic tree which groups are part of the Bilateria, Deuterostomia, Lophotrochozoa, Ecdysozoa ● List ancestral characteristics common to all animals and choanoflagellates, distinguish animals from choanoflagellates by shared derived characteristic of animals o Genes encoding rRNA o Chaperone proteins o Tubulin ● List and map shared derived characteristics of Eumetazoa, Bilateria, Deuterostomia, and the Protostomes onto a phylogenetic tree ● List the 4 protostome phyla discussed in lecture o Ecdysozoa o Lophotrochozoa o Cnidaria o Deuterostomes ● List shared derived characteristics of Lophotrochozoa and list 2 phyla that belong to this group o Spiral cleavage pattern of embryonic cells o Hox genes o Annelida and Mollusca ● List shared derived characteristics of Ecdysozoa and 2 phyla that belong to this group o Shedding exoskeleton to grow larger o Invertebrates o Arthropoda and Nematoda ● List the 4 classes of arthropods and be able to match the name of arthropods listed in class (and in the Life video) to the correct class o Chelicerata o Myriapoda o Crustacea o Insecta Darwin and Natural Selection: Chapter 19 ● Describe Lyell’s ideas about geologic processes and inferences about Earth’s age o Lyell believed that geologic processes operate today at the same rate as in the past. ● Compare & contrast Lamarck’s ideas vs Darwin’s idea regarding mechanisms of change in living organisms o Lamarck ▪ Species can change into new species ▪ Use and disuse ▪ Inheritance of acquired characteristics o Darwin ▪ Adaptation ▪ Species are changing due to natural selection ▪ Survival of the fittest ▪ Descent with modification: all species descend from a common ancestor ▪ Artificial Selection ● Define descent with modification o All living spp descended from one ancestor ● List and recognize examples of descent with modification in living organisms, both within and between species, and fossil organisms ● Define 2 conditions necessary for natural selection and give examples that satisfy each condition o Variation in inherited traits o More offspring than environment can support ● Evaluate conditions under which natural selection could occur ● Understand that natural selection acts on individuals, but causes changes in populations ● Compare and contrast natural selection and artificial selection: conditions necessary, selection pressure, result o Both: variation in heritable trait o Artificial selection - trait desired by humans - desired trait increases o Natural selection - selection pressure - trait desired by environment - favorable trait increases Chapters 11: Heredity ● Define Mendel’s Law of segregation o Principles that governs heredity ● Define Mendel’s Law of independent assortment o When two or more characteristics are inherited, individual hereditary factors assort independently during gamete production, giving different traits an equal opportunity of occurring together. ● Monohybrid cross – use Punnett square to detail possible genotype of gametes and progeny and indicate progeny phenotypes o Two individuals- two or multiple alleles for a single locus. ● Dihybrid cross – use Punnett square to show possible genotypes of gametes and progeny and indicate progeny phenotype o Cross between two different lines (varieties, strains) that differ in two observed traits. ● Identify dominant or recessive modes of inheritance from the notation (example: A is the dominant allele, a is the recessive allele) ● Analyze a pedigree to determine whether a trait is dominant or recessive o instructions-PBA.pdf ▪ Dominance - whether the disease alleles are dominant or recessive; (2) ▪ Linkage- whether disease alleles are X-linked or autosomal ▪ Autosomal chromosomes - The 22 chromosome pairs other than the XX (female) or XY (male) sex chromosomes. ▪ Allele - A version of a gene. Humans have 2 alleles of all their autosomal genes; females have 2 alleles of X- linked genes; males have one allele of X-linked genes (and one allele of Y-linked genes). ▪ Recessive-if any affected individual has 2 unaffected parents. ▪ Dominant- if every affected child of non- founding parents has an affected parent. ● Use information in a pedigree to determine genotype and calculate the probability of a dominant or recessive trait being inherited by a son or daughter ● Use a Punnett square to figure out possible gamete genotype and progeny genotypes for autosomal traits ● Use genotype and phenotype of parents to figure out genotype and phenotype of offspring (and vice versa) ● Use correct notation for dominant, recessive, co-dominant, wild-type, mutant, sex-linked o co-dominant- relationship between two versions of a gene. o wild-type- characteristic that prevails among individuals in natural conditions, as distinct from an atypical mutant type. o mutant- organism or a new genetic character arising or resulting from an instance of mutation, which is a base-pair sequence change within DNA or chromosome o sex-linked- trait associated with gene that is carried only by male or female parent. ● Define gene, locus, and allele. Know how many alleles an individual diploid organism can have for each locus. o Gene: the biological code of all traits o Locus: location on a chromosome where a gene sits o Allele: version of gene that codes for specific version of a character o An individual can have 2 alleles, one from each parent, in each locus. ● Explain why the number of alleles per gene in an individual can be different from the number of alleles per gene in a population o An individual has one allele per gene in each chromosome, meaning the individual exhibits only one trait. Vocabulary ● Phylogenetic tree- branching diagram representing the evolutionary history, group of organisms ● Archaea- unicellular prokaryotes distinguished by cell walls made of certain polysaccharides not found in bacterial or eukaryotic cell walls ○ plasma membranes composed of unique isoprene- containing phospholipids, ○ ribosomes and RNA polymerase similar to those of eukaryotes ● Bacteria- consisting of unicellular prokaryotes distinguished by cell walls ○ composed largely of peptidoglycan, ○ plasma membranes similar to those of eukaryotic cells, ○ ribosomes and RNA polymerase that differ from those in archaeans or eukaryotes. ● Eukarya- unicellular to multicellular organisms that have a membrane-bound nucleus containing several chromosomes. Sexual reproduction is common. ● Cyanobacteria- unicellular organisms ○ photosynthetic ○ oldest fossil autotroph ○ ancestor of chloroplast ○ form soil crust ○ forms a symbiotic relationship with fungi resulting in lichen ○ early cyanobacteria began releasing oxygen into the Earth’s atmosphere. With this rising concentration of atmospheric O2, several prokaryotic groups went extinct ● Excavata- Feeding groove along one side of cell ○ mitochondria that do not use O2 ○ many are heterotrophs and many are parasites ○ Giardia Intestinalis - intestinal parasite in mammals, transmitted by infected feces ○ Trypanosoma - parasite that causes sleeping sickness in mammals; transmitted by tsetse fly bites. ● Stramenopile­ unicellular diatoms ○ 2­part silicon dioxide wall ○ Photosynthetic ● Alveolate- Dinoflagellates ○ Photosynthetic ○ Some are symbiotic with corals (ex. Cnidaria) ○ Red tide ○ Some are bioluminescent ● Plastid- organelle surrounded by multiple organelles ● Diatom- unicellular, major group of algae ● Dinoflagellate- Photosynthetic ○ Some are symbiotic with corals (ex. Cnidaria) ○ Red tide ○ Some are bioluminescent ● Giardia- intestinal parasite in mammals, transmitted by feces ● Trypanosoma- parasite that causes sleeping sickness in mammals, transmitted by tsetse fly bites ● Plasmodium- causes malaria ● Autotroph- able to make its own food and energy ● Heterotroph- Consumes other organisms for energy ● Saprotroph- acquiring energy by absorbing nutrients from the environment ● Archaeplastida- land plants ● Ancestral characteristic- shared by the ancestral and current descendants ● Shared- derived trait shared by descendants ● Apical meristem- cell division at roots ● Sporangia- multicellular organs that produce desiccation-resistant spores ● Gametangia- either makes eggs OR sperm ● Sporophyte- is dominant generation, spores develops into a microscopic gametophyte within the parent sporophyte ● Gametophyte- produces sperm or egg ● Sporopollenin- resistant polymer that prevents spore from drying out or being crushed ● Unikonta- Fungi/Animalia ● Metazoa- Animalia ● Eumetazoa- eukaryotic clad in Kingdom Animalia that contains most major groups ● Bilateria- two-sided symmetry ● Lophotrochozoa- Spiral cleavage pattern of embryonic cells ○ Hox genes ○ Annelida and Mollusca ● Ecdysozoa- shedding of the exoskeleton to grow larger ● Gastrulation- tissue formation ● Mycorrhizae- symbiotic relationship between fungus and plant roots ● Adaptation-inherited trait that enhances survival and reproduction in the envi ● Natural selection- Darwin ○ mechanism of descent with modification ○ Individuals that inherit certain traits will survive better and produce more offspring in current local environment ● Artificial selection- intentional reproduction of individuals to have certain traits ● Evolution- theory that individuals descend from a common ancestor into better and more diverse forms ● Homology- existence of shared characteristics between structures or genes in different species. ● Analogy- similarity of function and resemblance of structures that have different origins ● Biogeography- study of species in different environments ● Hutton- Earth’s physical features are changing ● Lyell- Geological process operate today at the same rate as the past ● Lamarck-Species can change into new species ● Cuvier- Species go extinct due to a catastrophe ● Extant- opposite of extinct ● Allele-alternative version of the gene ● Blending hypothesis-mixing of the two parents ● Particulate hypothesis-mixing of the particles ● Character-varies between individuals ● Trait- variant of character ● P generation- parent ● F1 generation- 1st offspring ● F2 generation- 2nd offspring ● Law of segregation- Alleles separate from each other in the formation of gametes ● Law of independent assortment- Individual hereditary factors assort independently, so it gives an equal chance of occurring together ● Genotype-Genetic makeup ● Phenotype- What they look like ● Dominant allele- is heterozygous for that trait, or possesses one of each allele, then the dominant trait is expressed. ● Recessive allele- is only expressed if an organism is homozygous for that trait, or possesses two recessive alleles. ● Heterozygous- having 2 different versions of hereditary particles for a character ● Homozygous- having the same version of hereditary particles for a character ● Punnett square- method to predict possible combinations of gametes and offspring ● Monohybrid cross- one mixture of traits ● Dihybrid cross- mating between parents heterozygous for 2 characters


Buy Material

Are you sure you want to buy this material for

50 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Allison Fischer University of Alabama

"I signed up to be an Elite Notetaker with 2 of my sorority sisters this semester. We just posted our notes weekly and were each making over $600 per month. I LOVE StudySoup!"

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."


"Their 'Elite Notetakers' are making over $1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.