New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

BIO 181 Final Exam Study Guide

by: Ariel Hudson

BIO 181 Final Exam Study Guide BIO 181

Marketplace > Arizona State University > Biochemistry > BIO 181 > BIO 181 Final Exam Study Guide
Ariel Hudson
GPA 3.0

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

Complete outlines for the material that will be on the final exam!!!
General Biology 1
Chakravadhanula, Farrokh, Konikoff
Study Guide
50 ?




Popular in General Biology 1

Popular in Biochemistry

This 9 page Study Guide was uploaded by Ariel Hudson on Sunday May 1, 2016. The Study Guide belongs to BIO 181 at Arizona State University taught by Chakravadhanula, Farrokh, Konikoff in Winter2015. Since its upload, it has received 206 views. For similar materials see General Biology 1 in Biochemistry at Arizona State University.


Reviews for BIO 181 Final Exam Study Guide


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 05/01/16
Sensory Systems Lecture  ● Terms to know: tympanic membrane, ossicles, stapes, oval window, cochlea, basilar  membrane, photoreceptors, rods, cones, retina, bipolar cells, ganglion cells, opsins,  taste buds, glomerulus (in olfactory bulb)  ○ Tympanic Membrane: biological term for eardrum, sound waves vibrate through  the membrane so the vibration can be passed down to the ossicles.  ○ Ossicles: three small bones located in the middle ear cavity, which is after the  tympanic membrane. Vibrations are sent through the ossicles and to the stapes.  ○ Stapes: Connects the ossicles and the oval window. Vibrations go from the  stapes to the oval window.  ○ Oval Window: receives the vibrations of sound to generate waves in the fluid of  the cochlea.  ○ Cochlea: located in the inner ear, the cochlea detects sound frequencies and it is  broken up into three parts with are all filled with fluid. It contains hair cells which  are stimulated to detect the sound vibrations.  ○ Basilar Membrane: the bottom of all of the hair cells connect to this membrane,  the narrow part of the basilar membrane is stiff (stiffness varies) and it vibrates in  response to high frequencies. The wide part of the membrane is flexible and  vibrates in response to low frequencies.  ○ Photoreceptors: the last layer in the retina, they respond to different wavelengths  of light, they are light­sensitive cells (rods and cones) that form a layer at the  back of the retina. They are held in place by pigmented epithelium.    ○ Rods: a type of photoreceptor cell, they are sensitive to dim light but not color.  Rods dominate most of the retina. Contain the transmembrane proteins that  contain the pigment retinal. Rods and cones have membranous discs containing  thousands of opsin molecules (rhodopsin in rods)  ○ Cones: a type of photoreceptor cell, they are less sensitive to light and more  sensitive to different wavelengths (colors). Contain the transmembrane proteins  that contain the pigment retinal. Rods and cones have membranous discs  containing thousands of opsin molecules (rhodopsin in rods)  ○ Retina: it has three different layers (photoreceptors, bipolar cells, ganglion cells)  and is located at the back of the eyeball. It takes light from the cornea and the  lense.  ○ Bipolar Cells: the middle layer in the retina, these connect with ganglion cells to  form the intermediate layer of connecting neurons.  ○ Ganglion Cells: the layer in the retina that protects the brain.  ○ Opsins: like retinal molecules detect light, opsin molecules respond to different  wavelengths to determine color. There are three different kinds of opsins, each  one responds to a different wavelength.   ○ Taste Buds: Taste buds are buds found in the mouth and throat in humans  (mainly on the tongue) that contain over 100 taste cells.  ○ Glomerulus: a section in olfactory bulb  ● What do sensory receptors transduce sensory input into?  ○ They transduce sensory input into a change in membrane potential or electrical  signals depending on the type of stimulus.  ● Know the functions of the different sensory receptors. (Slide 6)  1. Mechanoreceptors: responds to distortion caused by pressure  2. Chemoreceptors: detect presence of specific molecules  3. Photoreceptors: responds to specific wavelengths of light  4. Thermoreceptors: detects change in temperatures  5. Nociceptors: senses harmful stimuli (ex tissue injury)  6. Electroreceptors: detect electrical fields  7. Magnetoreceptors: detects magnetic fields  ● Know that hair cells are involved in mechanoreception, and give a brief description of  how signal is transduced.  ○ hair cells are receptors activated by pressure (which is why they are  mechanoreceptors) caused by the waves in the fluid of the cochlea. They form  rows in the middle of the cochlea and connect to a basilar membrane, the cells  on different parts of the membrane respond to different frequencies.   ● What are the three major parts of the mammalian ear?  ○ Outer Ear: collects pressure waves and funnels them into the ear canal where  they strike the tympanic membrane(which is in the middle ear).   ○ Middle Ear: amplifies sound waves enough to stimulate the hair cells within the  cochlea of the inner ear.   ○ Inner Ear: detects sound frequencies. The fluid inside the cochlea vibrates,  stimulating certain hair cells.   ● How is sound transduced in the mammalian ear?  2+ ​ ○ Sound is transduced by the movement of Ca​ions created by the depolarization  of the hair cells which are activated by different pressures of frequencies.  ● How is light transmitted through the vertebrate eye?  ○ 1. Rhodopsin is activated when light causes retinal to change shape. 2.  Rhodopsin activates the membrane protein transducin, which in turn activates the  enzyme phosphodiesterase (PDE). 3. PDE breaks down cyclic guanosine  monophosphate (cGMP) to guanosine monophosphate (GMP). 4. As cGMP  levels decline, cGMP­gated Na+ channels in the plasma membrane of the rod  cell close. 5. When Na+ channels close, Na+ entry decreases and the membrane  hyperpolarizes, decreasing neurotransmitter release.   ● How is the retina organized? What are the functions of its three layers?  1. Photoreceptors: light­sensitive cells (rods and cones) that form a layer in the  back of the retina.   2. Bipolar cells: an intermediate layer of connecting neurons.  3. Ganglion cells: form the front or innermost layer of the retina and whose axons  project to the brain through the optic nerve   ● What is the molecular basis of vision in vertebrates?  ○ The molecular basis of vision in vertebrates is a shape change in retinal that  closes ion channels and decreases the amount of neurotransmitter being  released to the sensory neuron.   ● How do gustation and olfaction work in mammals?  ○ Gustation(taste): Taste buds (which are located throughout the tongue and  throat)  contain many types of chemoreceptors. There is strong evidence that salt  and sour sensations result from the activity of ion channels.   ○ Olfaction(smell):  chemoreceptors in the nose respond to specific odorants. Each  of the chemosensory neurons in the nose has one type of odor receptor protein  on its dendrites. Sensory neurons with the same receptor project to the same  glomerulus, or section within the olfactory bulb of the brain.     Musculoskeletal Systems Lecture  ● Terms to know: myofibrils, sarcomeres, actin, myosin, troponin, tropomyosin, ACh,  bones, cartilage, tendons, ligaments, slow fibers, fast fibers, intercalated discs  ○ Myofibrils: small strands found in muscle fibers which are made up of light and  dark spots called sarcomeres. As myofibrils contract, sarcomeres shorten.  ○ Sarcomeres: make up the myofibrils and are made of two proteins, actin and  myosin. These two proteins slide past one another during muscle contraction.  Sarcomeres shorten as myofibrils contract and lengthen when the cell relaxes  and a force stretches the muscle.  ○ Actin: (thin filaments) one of the two proteins that make up sarcomeres.  ○ Myosin: (thick filaments) one of the two proteins that make up sarcomeres.  Contains myosin heads that bind to spots on the actin.  ○ Troponin: one of the two proteins found in thin filaments. Troponin and  tropomyosin work together to block the myosin binding sites on the actin. This  prevents the filaments from sliding past each other by covering the binding sites  on actin.   ○ Tropomyosin: one of the two proteins found in thin filaments. Troponin and  tropomyosin work together to block the myosin binding sites on the actin. This  prevents the filaments from sliding past each other by covering the binding sites  on actin.  ○ ACh: also known as acetylcholine, this neurotransmitter stimulates contraction of  smooth muscle in the stomach and intestine as well as slows down heart rate.  ○ Bones: Cells have a hard ECM with calcium phosphate (CaPO4) and small  amounts of calcium carbonate and protein fibers. Bones meet at articulations  (joints).   ○ Cartilage: Cells are scattered in a gelatinous matrix of polysaccharides and  protein fibers. Cartilage can be rigid or rubbery. For example, it is what your ears  and nose are made out of. Also, sharks do not have any bones, they are made  up of cartilage.  ○ Tendons: Bands of fibrous connective tissue (primarily collagen) connect skeletal  muscles to bones.  ○ Ligaments: Bands of fibrous connective tissue (primarily collagen) connect  skeletal muscles to bones.  ○ Slow Fibers: Specialized for endurance, fatigue slowly  Examples: soleus muscle  in the back of the calf (helps you stand upright), “dark meat” of chicken legs   ○ Fast Fibers: Specialized for bursts of activity, fatigue quickly. Examples: muscles  that control your eye movements, “white meat” of chicken breasts   ○ Intercalated Discs: connect cardiac muscle cells  ● What are the different parts of the sarcomere? What are the thick and thin filaments and  where do they overlap?  ○ The sarcomere is made of actin(thin filament) and myosin(thick filament) which  overlap in the dark band.  ● How do the sarcomeres contract according to the sliding filament model?   ○ When a sarcomere contracts, the lengths of the thin filaments and thick filaments  do not change. Rather, the filaments slide past one another.  ● What are the steps in the current model of muscle contraction? What can myosin’s  “head” bind to?  ○ 1. ATP binds to the myosin head, causing a shape change that releases the head  from actin. 2. When ATP is hydrolyzed, the neck of myosin straightens and the  head pivots. The head binds to a new actin subunit farther down the thin filament.  The myosin head is “cocked” into its high energy state (ready for power stroke).  3. When Pi is released, the neck bends back to its original position. This bending  (the “power stroke”) moves the entire thin filament relative to the thick filament. 4.  After ADP is released, the myosin molecule is ready to bind to another molecule  of ATP.   ● How do troponin and tropomyosin work together to regulate muscle activity?  ○ They bind to the myosin active sites located on the actin to prevent the filaments  from sliding past each other.  ● How do neurons initiate muscle contraction? What neurotransmitter is involved?    ○ Action potentials trigger the release of the neurotrans​cetylcholin​(ACh)  from the motor neuron into the synaptic cleft between the motor neuron and  muscle cell.   ● Name the three classes of muscle in vertebrates and briefly describe their  characteristics.  1. Smooth: found in blood vessels, the stomach, the intestines and the bladder, smooth  muscles do not contain sarcomeres.  2. Cardiac: highly branched cells found in the heart. ACh decreases heart rate and  epinephrine increases heart rate.  3. Skeletal: voluntary and must be stimulated by somatic neurons. Contains two types of  fibers (slow and fast)  ● What are the characteristics of slow and fast fibers?  ○ Slow: Specialized for endurance, fatigue slowly, they contain many mitochondria,  depend on aerobic respiration for ATP, high myoglobin concentration . Examples:  soleus muscle in the back of the calf (helps you stand upright), “dark meat” of  chicken legs  ○ Fast: Specialized for bursts of activity, fatigue quickly, they do not have many  mitochondria, depend on glycolysis for ATP,low myoglobin concentration .  Examples: muscles that control your eye movements, “white meat” of chicken  breasts  ● Skeletal systems perform what main functions? Name the major vertebrate skeleton  elements, and briefly describe each.  ○ 1. Protectionfrom physical and biological atta​. Maintenance of body  posture​ despite the downward pull of gravity and the vagaries of wind and  waves. 3.Re­extension ​of shortened muscles so that muscles can contract  more than once. 4. Transfer of muscle forceto other parts of the body and the  environment, enabling a greater range of force production and shape change  than can be accomplished by muscle alone.  ● What is locomotion? What forces dominate on land?  ○ Locomotion is the movement of an animal under its own power, it requires  muscle forces against the land, water or air surrounding the animal. On land,  gravitational and inertial forces dominate. In water, organisms must overcome  drag, the force that resists forward motion through fluids. In air, flying organisms  must overcome drag and generate enough lift to overcome gravitational forces.  ● What is the relationship of body size and cost of locomotion?  ○ Cost of locomotion decreases as body size increases.    Hormones and the Endocrine Systems Lecture  ● Know the five categories of chemical signals in animals and give a brief description of  each.  1. Autocrine Signals: acts on the same cell that secretes them, ex interleukin 2  2. Paracrine Signals: diffuse locally and act on the cells around them, ex insulin and  glucagon  3. Endocrine Signals: are hormones carried between cells by blood or other bodily fluid  4. Neural Signals: diffuse a short distance between neurons  5. Neuroendocrine Signals: hormones released from neurons, ex antidiuretic hormone  (ADH)  ● What are the three hormone signaling pathways? How are they regulated? All are  regulated by negative feedback.  1. Endocrine Pathway: sends hormones directly from endocrine cells to effector cells  2. Neuroendocrine Pathway: releases neuroendocrine signals that act directly on effector  cells.   3. CNS­to­Endocrine Pathway:  neuroendocrine signals stimulate cells in the endocrine  system, which respond by producing an endocrine signal that acts on effector cells.  ● What are the major human endocrine glands?  ○ pituitary gland, thyroid and parathyroids, kidneys, adrenal glands   ● What are the functions of the anterior and posterior pituitary?  ○ Anterior Pituitary: communicates indirectly with the hypothalamus via blood  vessels.  ○ Posterior Pituitary: an extension of the hypothalamus   ● Know that the physical link between the hypothalamus and pituitary is the basis of the  connection between the CNS and endocrine system.  ● Know the functions of the following hormones: leptin, EPO, cortisol, epinephrine, ADH,  oxytocin, melatonin, GH, TSH  ○ Leptin: controls eating behavior, an increase in leptin leads to a decrease in food  appetite.  ○ EPO: stimulates the production of red blood cells to increase blood viscosity  when blood oxygen levels fall  ○ Cortisol: Long­term stress response helps animals cope with extended stress.  Cortisol levels are increased.  ○ Epinephrine: influence blood glucose levels and are produced in the “flight or  fight” response.  ○ ADH: Antidiuretic hormone acts on the collecting duct of the kidney and regulates  excretion of water and is an example of the neuroendocrine signals  ○ Oxytocin:It can cause or strengthen labor contractions during childbirth, and  control bleeding after childbirth. It can also be used to induce abortion.  ○ Melatonin: aids in sleep cycles.  ○ GH: stimulates growth, cell reproduction, and cell regeneration in humans and  other animals.  ○ TSH: stimulates the thyroid gland to produce thyroxine    Reproductive Systems Lectures:  ● Terms to know: sperm, eggs, fertilization, oviparous, viviparous, ovoviviparous, testes,  epididymis, vas deferens, ova, ovary, fallopian tube, uterus, cervix, hCG, oxytocin, FSH,  LH, GnRH  ○ Sperm:  (their production is called spermatogenesis) is produced by males.  Sperm must penetrate the corona radiata before they can fertilize the oocyte.   ○ Eggs: (their production is called oogenesis)produced by females, eggs have a  protective structure called the corona radiata.  ○ Fertilization: occurs when a sperm and an egg unite and fertilization can occur  internally(most animals at a small scale) or externally(most aquatic animals and  at a larger scale).   ○ Oviparous: The embryo completes most of its development in an egg laid into the  environment. (sea urchins, most insects)   ○ Viviparous: The embryo develops entirely in the mother’s body. (most mammals)   ○ Ovoviviparous: Offspring develop in the mother’s body but are nourished by yolk  stored in the egg (sharks)   ○ Testes: male organ that produces sperm  ○ Epididymis: male organ the stores sperm  ○ Vas Deferens:  transports sperm from the epididymis to the ejaculatory duct.  ○ Ova: (mature egg cells) which are produced in the ovary. They are membrane  bound with a haploid nucleus, full complement of other organelles, and large  nutrient supply (yolk).  ○ Ovary: produces mature egg cells (ova)  ○ Fallopian Tube: place in female where fertilization may take place  ○ Uterus: place in female where babies are expelled and where embroygenesis  takes place   ○ Cervix: is the barrier between the uterus and the vagina   ○ hCG:  human chorionic gonadotropin is made once an embryo is implanted in the  uterine lining. This stops the menstrual cycle so the pregnancy can continue and  is produced in larger and larger quantities as the development proceeds.  ○ Oxytocin: It can cause or strengthen labor contractions during childbirth, and  control bleeding after childbirth. It can also be used to induce abortion.  ○ FSH:  control the release of estradiol and progesterone from reproductive  tissues.  ○ LH: control the release of estradiol and progesterone from reproductive tissues.  ○ GnRH:  released from the hypothalamus, leading to pulses in FSH and LH during  puberty.  ● Human  male reproductive organs carry out what three major functions? What are the  structures involved in carrying out these functions?  ○ 1. Spermatogenesis and sperm storage. Sperm is produced in the testes and  stored in the epididymis. 2. Production of accessory fluids. Complex solutions  form in the seminal vesicles, prostate gland, and bulbourethral gland. 3.  Transport and delivery. The vas deferens transports sperm from the epididymis  to the ejaculatory duct. Semen is expelled through the urethra.   ● Human female reproductive organs carry out what two major functions? What are the  structures involved in carrying out these functions?  ○ 1. Production and transport of eggs. During ovulation a secondary oocyte is  expelled from the ovary and enters the fallopian tube, where fertilization may take  place. Eggs are transported to the uterus. 2. Development of offspring.  Embroygenesis takes place in the uterus. During childbirth the fetus passes  through an opening in the cervix and into the vagina.   ● What roles do sex hormones play in mammalian reproduction? Where is testosterone  produced? Estradiol?  ○ Sex hormones are the cause of development of the reproductive tract in  embryos, maturation of the reproductive tract, and regulation of spermatogenesis  and oogenesis in adults.   ○ Testosterone is produced in the testes   ○ Estradiol is produced in the ovaries  ● What is puberty and what hormones trigger it in humans?  ○ Puberty is the process that leads to sexual maturity in humans. Puberty is  triggered by hormones from the hypothalamus and pituitary. GnRH is released  from the hypothalamus, leading to pulses in FSH and LH.  ● Briefly describe the phases of the menstrual cycle, what major events occur during the  follicular and luteal phases?  ○ the uterine lining undergoes thickening and regression in conjunction with  changes in the ovary. This happens monthly, watch out boys.  ○ Follicular Phase: A follicle matures and takes around 14 days. Primary oocytes  completed meiosis I. Ovulation occurs when the secondary oocyte is released  into the oviduct.  ○ Luteal Phase: This phase lasts around 14 days, and begins with ovulation.   ● What happens when an embryo is implanted in the uterine lining? What does hCG do?  ○ human chorionic gonadotropin is made once an embryo is implanted in the  uterine lining. This stops the menstrual cycle so the pregnancy can continue and  is produced in larger and larger quantities as the development proceeds.  ● What happens during the first trimester of development? Second? Third?  ○  In the first trimester, major embryonic tissue types form and begin to  differentiate. The placenta also forms from the uterine wall. After the fetal organs  and placenta form during the first trimester, the rest of development consists  mainly of growth(second trimester). During the last weeks of pregnancy the brain  and lungs undergo dramatic growth(third trimester).  ● How are human babies normally born?  ○ First the dilation of the cervix occurs, which creates a big canal for the baby to go  through. Then the baby is pushed out of the vagina (typically head first and face  down). Then the placenta is expelled too.    Immune Systems Lectures  ● Terms to know: immunity, pathogens, lymphocytes, B cells, T cells, MHC, cell mediated  response, humoral response, antigen, epitope  ○ Immunity: resistance to or protection against pathogens, there are two types of  immunity, innate and adaptive.  ○ Pathogens: are disease­causing organisms that include bacteria, fungi, viruses,  and parasites  ○ Lymphocytes: a small white blood cell that circulate through the blood and the  secondary organs of the immune system. There are two types, B cells and T  cells.  ○ B cells: lead to antibody production and bind to antigens directly  ○ T cells: are involved in many functions, including recognizing and killing host cells  infected with a virus, these only bind only to antigens displayed by other cells  ○ MHC: T cells are activated by interacting with MHC peptide complexes.   ○ Cell mediated response: ​n immune response that does not involve antibodies,  but rather involves the activation of phagocytes, antigen­specific cytotoxic  T­lymphocytes, and the release of various cytokines in response to an antigen.  ○ Humoral response: ​immunity that is mediated by macromolecules (as opposed to  cells)  ○ Antigen: foreign molecules that can initiate an immune response  ○ Epitope: specific parts of antigens that antibodies bind to  ● What is the most important barrier to pathogen entry in humans and other animals?  ○ The skin  ● Be able to compare and contrast key characteristics of the innate vs. adaptive  immune  systems   ○ Innate immune systems have a general, rapid response. This is the body’s first  response to pathogens. Located in all animals.  ○ Adaptive immune systems have a slower more specific response, they have four  characteristics 1. Specificity – Antibodies and other components bind only to  specific sites on specific antigens. 2. Diversity – The adaptive response  recognizes an almost limitless array of antigens. 3. Memory – The adaptive  response can be reactivated quickly if it recognizes antigens from a previous  infection. 4. Self vs. nonself recognition – An animal’s cells can recognize if other  cells are a part of itself or not.  They are only located in vertebrates.  ● What are antibodies? What cells make them? Which specific type of antibody is involved  in the allergic response?  ○ Made by B cells, antibodies are soluble glycoproteins that bind only to a specific  part of a specific antigen. Antibodies that  identify a particular allergen as harmful,  even though it isn’t, are the cause of allergies.   ● Know that vaccination leads to immunological memory.  ● Compare and contrast primary vs. secondary immune response.  ○ The secondary immune response is stronger and faster than the primary  response.   ● What are allergies and why do they occur? What is an autoimmune disorder? What is an  immunodeficiency disease?  ○ Allergies occur when antibodies identify a particular allergen as harmful, even  though it isn’t. Autoimmune Disorder is when the body cannot tell the difference  between healthy tissue and antigens, so the body starts attacking itself.  Immunodeficiency disease is a disorder caused by an inherited flaw in the  immune system that increases the susceptibility to infections   


Buy Material

Are you sure you want to buy this material for

50 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Janice Dongeun University of Washington

"I used the money I made selling my notes & study guides to pay for spring break in Olympia, Washington...which was Sweet!"

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."


"Their 'Elite Notetakers' are making over $1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.