New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

intro to math

by: Temitope Abolade

intro to math M 302

Temitope Abolade
Federal University of Technology Akure

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

study aid
Introduction to Mathematics
Study Guide
50 ?




Popular in Introduction to Mathematics

Popular in Mathematics (M)

This 4 page Study Guide was uploaded by Temitope Abolade on Thursday May 5, 2016. The Study Guide belongs to M 302 at Federal University of Technology Akure taught by johnson_bollz in Spring 2016. Since its upload, it has received 11 views. For similar materials see Introduction to Mathematics in Mathematics (M) at Federal University of Technology Akure.

Similar to M 302 at Federal University of Technology Akure

Popular in Mathematics (M)


Reviews for intro to math


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 05/05/16
Introduction to Mathematical Thinking Learn how to think the way mathematicians do ­ a powerful cognitive process developed over  thousands of years. About the Course NOTE: Coursera encountered difficulties in converting my course to run on the new platform. Working together, we have found a way to modify the course to circumvent the missing  platform features, without losing too much of what made the course work. Completing that  work will involve considerable time and effort, and I am unlikely to have much time to look at  this until the summer. This means that the earliest Session 8 could run is Fall 2016. Please  check back here in August. Sorry about this. ­­ Keith Devlin, 1/25/2016 (modified 4.21.2016) The goal of the course is to help you develop a valuable mental ability – a powerful way of  thinking that our ancestors have developed over three thousand years.   Mathematical thinking is not the same as doing mathematics – at least not as mathematics is  typically presented in our school system. School math typically focuses on learning procedures  to solve highly stereotyped problems. Professional mathematicians think a certain way to solve  real problems, problems that can arise from the everyday world, or from science, or from within  mathematics itself. The key to success in school math is to learn to think inside­the­box. In  contrast, a key feature of mathematical thinking is thinking outside­the­box – a valuable ability  in today’s world. This course helps to develop that crucial way of thinking.   The course is offered in two versions. The eight­week­long Basic Course is designed for people  who want to develop or improve mathematics­based, analytic thinking for professional or  general life purposes. The ten­week­long Extended Course is aimed primarily at first­year  students at college or university who are thinking of majoring in mathematics or a  mathematically­dependent subject, or high school seniors who have such a college career in  mind. The final two weeks are more intensive and require more mathematical background than  the Basic Course. There is no need to make a formal election between the two. Simply skip or  drop out of the final two weeks if you decide you want to complete only the Basic Course. Subtitles for all video lectures available in: Portuguese (provided by The Lemann Foundation), English Course Syllabus Instructor’s welcome and introduction  1.  Introductory material  2.  Analysis of language – the logical combinators  3.  Analysis of language – implication  4.  Analysis of language – equivalence  5.  Analysis of language – quantifiers  6.  Working with quantifiers  7.  Proofs  8.  Proofs involving quantifiers  9.  Elements of number theory 10.  Beginning real analysis Recommended Background High school mathematics. Specific requirements are familiarity with elementary symbolic  algebra, the concept of a number system (in particular, the characteristics of, and distinctions  between, the natural numbers, the integers, the rational numbers, and the real numbers), and  some elementary set theory (including inequalities and intervals of the real line). Students whose  familiarity with these topics is somewhat rusty typically find that with a little extra effort they  can pick up what is required along the way. The only heavy use of these topics is in the  (optional) final two weeks of the Extended Course. A good way to assess if your basic school background is adequate (even if currently rusty) is to  glance at the topics in the book Adding It Up: Helping Children Learn Mathematics (free  download), published by the US National Academies Press in 2001. Though aimed at K­8  mathematics teachers and teacher educators, it provides an excellent coverage of what constitutes a good basic mathematics education for life in the Twenty­First Century (which was the National Academies' aim in producing it). Suggested Readings There is one reading assignment at the start, providing some motivational background. There is a supplemental reading unit describing elementary set theory for students who are not  familiar with the material. There is a course textbook, Introduction to Mathematical Thinking, by Keith Devlin, available at  low cost (US base price $10.99) from Amazon, in hard copy and Kindle versions, but it is not  required in order to complete the course. For general background on mathematics and its role in the modern world, take a look at the five  week survey course on mathematics ("Mathematics: Making the Invisible Visible") Devlin gave  at Stanford in fall 2012, available for free download from iTunes University (Stanford), and on  YouTube (1, 2, 3, 4, 5), particularly the first halves of lectures 1 and 4. Course Format The Basic Course lasts for eight weeks, comprising ten lectures, each with a problem­based work assignment (ungraded, designed for group work), a weekly Problem Set (machine graded), and  weekly tutorials in which the instructor will go over some of the assignment and Problem Set  questions from the previous week.  The Extended Course consists of the Basic Course followed by a more intense two weeks  exercise called Test Flight. Whereas the focus in the Basic Course is the development of  mathematically­based thinking skills for everyday life, the focus in Test Flight is on applying  those skills to mathematics itself.  FAQ  Will I get a certificate after completing this class?  The course does not carry Stanford credit. If you complete the Basic Course with more  than a minimal aggregate mark, you will get a Statement of Accomplishment. If you go  on to complete the Extended Course with more than a minimal mark, you will receive a  Statement of Accomplishment with Distinction.  What are the assignments for this class?  At the end of each lecture, you will be given an assignment (as a downloadable PDF file,  released at the same time as the lecture) that is intended to guide understanding of what  you have learned. Worked solutions to problems from the assignments will be described  the following week in a video tutorial session given by the instructor. Using the worked solutions as guidance, together with input from other students, you will self­grade your assignment work for correctness. The assignments are for understanding  and development, not for grade points. You are strongly encouraged to discuss your work with others before, during, and after the self­grading process. These assignments (and the  self­grading) are the real heart of the course. The only way to learn how to think  mathematically is to keep trying to do so, comparing your performance to that of an  expert and discussing the issues with fellow students.  Is there a final exam for this course?  No. The Test Flight exercise in the final two weeks of the Extended Course is built  around a Problem Set similar to those used throughout the course, and your submission  will be peer evaluated by other students, but the focus is on the process of evaluation  itself, with the goal of developing the ability to judge mathematical arguments presented  by others. Whilst not an exam, Test Flight is an intense and challenging capstone  experience, and is designed to prepare students for further study of university level  mathematics.  How is this course graded?  In the Basic Course, grades are awarded for the weekly Problem Sets, which are machine  graded. The aggregate grade is provided in the cover note to the Statement of  Accomplishment, with an explanation of its significance within the class. In the Extended Course, additional grades are awarded for a series of proof evaluation exercises and  for the Test Flight Problem Set (peer evaluated). The aggregate grade is provided in the  cover note to the Statement of Accomplishment with Distinction, with an explanation of  its significance within the class.


Buy Material

Are you sure you want to buy this material for

50 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Kyle Maynard Purdue

"When you're taking detailed notes and trying to help everyone else out in the class, it really helps you learn and understand the I made $280 on my first study guide!"

Bentley McCaw University of Florida

"I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"

Parker Thompson 500 Startups

"It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.