New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

GEOG201 Final Exam Review

by: Trang Le

GEOG201 Final Exam Review GEOG201

Marketplace > University of Maryland > GEOG201 > GEOG201 Final Exam Review
Trang Le
GPA 3.45

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

Here's all you need to know for the final exam. I hope this helps you better prepare for it (and also make studying a little more fun because I try to add some funny stuff in there somewhere haha)....
Geography of Environmental Systems
Keith Yearwood
Study Guide
50 ?




Popular in Geography of Environmental Systems

Popular in Department

This 13 page Study Guide was uploaded by Trang Le on Monday May 9, 2016. The Study Guide belongs to GEOG201 at University of Maryland taught by Keith Yearwood in Fall 2015. Since its upload, it has received 127 views.


Reviews for GEOG201 Final Exam Review


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 05/09/16
GEOG201 FINAL EXAM REVIEW Here I will stay closely to the study guide that Dr. Yearwood put up in class as well as answer  the questions posted on the Word doc titled “Preparation for Exam 3” A. Answer questions on ELMS: 1, The transparency (basically how much is in the air) influences the ability of solar radiation to  penetrate the atmosphere and heat land, air and water. In other words, a dirty/hazy atmosphere  allows less radiation to reach the surface of the Earth than a clear one. Transparency is controlled mainly by particulate matter (aerosols), minute particles of liquid and solid matter. 2, As mentioned, aerosols play a huge part in affecting transparency thus the amount of solar  radiation that can reach Earth. There’re six possible sources for aerosols:   Wind erosion of soil  Industrial and automobile exhaust  Meteor disintegration  Asteroid impacts  Phytoplankton in the oceans  Volcanic eruptions There’re also two other categories for particulate matter that affects transparency:  Air pollution from human activities (urban pollution, forest/grassland fires) also  discharges large amounts of particulate into the lower atmosphere.  Clouds are also made up of particles and can have a strong influence over atmospheric  transparency because they’re an efficient reflector of solar radiation. 3, There’s been ample evidence that temperature often drops during periods of high percentage  of aerosols discharged into the atmosphere. What happens is aerosols reflect back the shortwave  radiation and prevents it from reaching the ground, thus we have cooler lower atmosphere and  land. Example: Mount Pinatubo eruption in the Philippines spread airborne ash globally and was  followed by a year with a lower average temperature. Also, major volcanic eruptions in 19   th century were followed by long harsh winters in the northern hemisphere. The idea works the  same for appearance of clouds: increases albedo. 4, Aerosols can prevent solar radiation from warming the lower atmosphere, thus may cause long harsh winters or just cooler temperature in general. This can shorten growing seasons for crops,  decrease yield etc => negatively affect agriculture. 5, Two major gases that regulate greenhouse effect are water vapor and carbon dioxide. Also,  there can be several other gases that play a part, including methane, ozone and nitrous oxide. 6, According to NASA, about 55 million years ago an event known as the Paleocene­Eocene  Thermal Maximum (PETM) occurred. This was an episode of rapid and intense warming (up to  7°C at high latitudes) which lasted less than 100,000 years. In other words, this event caused a  significant rise in atmospheric temperature. The textbook has a shorter way to put it: basically 55 million years ago there was a great shift in global temperature/climate due to the great methane  burp from the oceans. 7, Carbon dioxide has increased by 30% because of air pollution since the Industrial revolution.  Most of this comes from developed nations, from industries, urbanization and automobiles; but it spread globally. B. Exam review in different categories (lectures): I. CLOUDS:  They’re very small, very light liquid water in the form of water droplets that can stay  airborne without being pulled down by gravity.  In order to form clouds, besides tiny water droplets, there have to be hygroscopic or  condensation nuclei. There can be thousands of these particles in a small volume of air.  “Hygro”: moisture, “scopic”: to seek. Hygroscopic nuclei can come in the form of dust,  smoke and salt particles.    A cloud: a dense condensation of water droplets or tiny ice crystals (if formed in below  freezing temp). In other words: it is a visible aggregate of minute droplets of water or  tiny crystals of ice.  Clouds are classified base on their form and height Types of clouds:  Cirrus (a curl of hair): it’s high, white and thin. Can occur as a delicate veil­like sheets or  patches or feathery appearance.  Cumulus (a pile, cotton wool or cauliflower): globular individual cloud masses.  Stratus (layer): sheet­like clouds that have no distinct individual units.  HIGH clouds (above 20,000 ft): Cirrus, Cirrostratus and Cirrocumulus. Generally occur  as thin white sheets (spread out/large or individual units or feather­like). Their occurrence is due to low temperatures at high latitude plus little water vapor. Therefore, they’re made of tiny ice crystals and are not rain­bearing clouds.  MIDDLE clouds (6,500 to 20,000 ft): Altostratus, Altocumulus (most common).  Altostratus: gray and/or blue­ish. Thin sheets that almost or partially cover the sky,  usually thin enough for radiation penetration. Altocumulus: White or gray patch or  layered clouds.   LOW clouds: Nimbostratus (rain­bearing), stratus and stratocumulus. Nimbostratus: rain  alert (might or might not contain ice crystals – depending on temperature)! They are  thick, dark clouds that are formed when the surface of Earth is heated and water vapor  rises; as they rise they hit the mid atmosphere with cooler temperature, along with some  hygroscopic nuclei, which causes condensation. Stratus clouds: uniform layers or fog­like clouds that do produce light precipitation. Stratocumulus: Gray or whitish patch, sheet, or layered clouds.  Clouds with VERTICAL development: cumulus and cumulonimbus. The base of these  clouds is in low altitude range and extends upward to mid or high altitude range. They are associated with unstable air!  Cumulus: often associate with fair weather. They’re flat based and sometimes grey  underside.  Under proper conditions, cumulus clouds can grow dramatically to great heights and  create cumulonimbus clouds. These giants are often associated with thunderstorms! WATER: addition and removal of heat causes it to change state (liquid ↔ gas).  CONDENSATION: when water vapor turns into liquid. Water molecules release energy that’s  equivalent to what’s absorbed during evaporation. When this happens in the atmosphere, clouds  and fog are formed. This also releases heat to surrounding air, thus gives rise to storm clouds. FOUR PROCESSES that lift air and lead to PRECIPITATION:  Orographic lifting:  Frontal wedging: Cold air masses move across a landscape. When the front of them  reaches warm, moist air, it forces the warm air to rise. This cools the warm air and  condenses the water vapor => precipitation.  Convergence lifting:  Convective lifting: air above a parking lot (or asphalt surfaces) is warmed much faster  than that above/surrounding wood areas. This parcel of air is lighter and it rises. These  lifting parcels of air are called thermals. II, Natural vegetation: 1. Tropical equatorial forest:  Generally have two layers: tall canopies and ground level plants such as shrub and  saplings. There are also two other special types of plants: epiphytes and air plants.  Tall trees are also called emergent. They’re often widely spaced, reaching 100 to 120 ft  tall and have canopies with umbrella­ish shape and straight chunk (body) with only  branches at the top. This is one adaptation that these trees have because of the harsh  competition for sunlight. Less than 3% of sunlight that reaches the canopies actually goes through and reaches the ground under.  The ground has sparse plant growth, primarily the shade­loving small plants like shrub  and saplings.   Another adaptation arises because of the characteristic of the soil in these forests. The  soil here is nutrient poor and most of what the trees need lies in the top thin organic layer. Therefore, the tall trees here have buttress roots, shallow and spreading horizontally, to  absorb the nutrient accordingly. The root shape also anchors the trees and prevents  falling.  Epiphytes are plants that climb upon the tall tree trunks for support and for absorbing  sunlight. Some examples are vines such as lianas.  Air plants are plants aptly that have roots established in the canopies and never reach  ground level.   All of these amazing organisms are supported by the abundant solar radiation and  precipitation. 2. Tropical savanna grassland:  There’s not enough rain to support many trees like those above. Precipitation is  concentrated among these months: June to September. The rest of the months have very  little to no rain at all.  Plants here have adapted surviving strategies:  Grass everywhere! Tall grass dominates. The grasses grow tall and green during wet  season.  What about the trees? Of course they have things that correspond with the wet/dry  rhythm of the climate here.  Acacia plants have spine­like leaves which makes them harder to eat (prevent  herbivores/omnivores) and reduce transpiration or loss of water.  Plant root systems are long and extensive to reach ground water in deep reservoirs.  Some plants like baobap trees store water in their trunks during wet seasons. 3. Tundra (treeless land):  Vegetation: lichen, mosses, sedges, perennial forbs, dwarfed shrubs   There’s high variation in temperature change, but overall it’s really cold here. The  growing seasons therefore are short and there’s not enough precipitation to support full  grown trees. So, vegetation here has developed adaptation to this harsh climate.  Well… they’re small plants that can undergo dry/cold climate, it’s pretty simple. For the  rest of the limited, larger plants, the adaptation goes similar to what their brothers in  another region (pretty close to their region) down here. 4. Taiga/boreal or coniferous forests:  Again, great variation in temperature. It gets above freezing during June to August, and  pretty much stay below freezing throughout the rest. Precipitation is also concentrated in  these short warmer months.  The trees here have conical shape that promotes shedding of snow and prevent loss of  branches.  They also have needle­like leaves that minimize transpiration and the thick waxy coating  – a waterproof cuticle – protects the stomata from drying winds. So basically lots of stuff  to prevent water loss.  The leaves have antifreeze to prevent shedding throughout winter. Their dark color helps  them to absorb maximum amount of sunlight and begin photosynthesis as soon as  possible. The early and immediate photosynthesis is also supported with the evergreen  characteristic. 5. Mediterranean vegetation:  It’s characterized by shrubs. In most regions the shrubs are evergreen and have small,  leathery leaves with thick cuticles (A layer of wax and cutin that covers the outermost  surfaces of a plant). They may be shrunken to needle­like shape.  Many typical members of the shrub flora are aromatic (for example, sage, rosemary,  thyme, and oregano) and contain highly flammable oils.  6. Temperate broad leaf trees:  They do receive better precipitation and longer growing season, but they also bear cold  winters.  Tactics for surviving freezing winters by these guys: they pull out all nutrients from their  leaves and back into their trunks. At the same time, they produce a sugary anti­freeze that will protect their bodies. The leaves then die and get discarded with yellow/orange/red  colors (disappearance of chlorophylls).  7. Desert plants:  Props for these guys for surviving extreme heat and dry climate! They’re called  xerophytic because they’re drought resistant.  Needle leaves? Nah! They have spines instead, eliminating water loss like a boss! They  have water storage organs (cacti) and a root system that is shallow and spreading out.   This allows them to both absorb max amount of rainfall. Last but not least, they  germinate only after heavy rain and complete their reproductive cycle quickly.  Meet another member of the family: Phreatophytes. The only difference is that these guys have long deep root system instead, reaching deep down for underground water.  Mesquite: The Creosote Bush has special adaptations including leaves that have a smell  and taste that wildlife find unpleasant. In addition, the leaves are tiny and the stomata  (pores) are closed during the day to avoid water loss and open at night and they absorb  moisture. Learning from their brothers above, these dudes have both long and radial roots (double root system). III. Sea level rise: It is happening! Also, it’s both a natural process and accelerated/altered by human activities.  Remember, sea levels have changed several times over the history of the earth by a pretty  uniform pattern. However, over the last 200 years or so, the pattern has changed. In recent times,  the average global sea level is rising and evidence can be found in measurements of tide gauges.  Of course people live in coastal areas will be the most vulnerable to sea level rise. An example  th here is Miami. It’s the 7  largest city in U.S so any change in sea level with subsequently impact  the lives of millions: spending a lot of money for preventing flooding, relocation, businesses  getting hurt etc The Intergovernmental Panel on Climate Change (IPCC) predicts a range of rise for sea level  (from about 31cm to 110cm). Also, they project that (anthropogenic) climate change causes sea  level rise. Now let’s dig a little deeper into why and how this is happening.  Since Industrial revolution, burning of fossil fuels release more carbon dioxide into  atmosphere, resulting in overall increase in global temperature. This in turn melts more  snow fields, ice sheets and glaciers and add to ocean water volume (Dilution of ocean’s  salt water will cause sea to expand).  Also, note the steric effect: temperature increase => warmer oceans. Warmer water also  cause ice/glaciers to melt more and expand oceans further.  Example of rapid ice melting: ice field in Alaska or Greenland.  So what exactly is melting?  In short, ice shelves that support glaciers and land ice respond very quickly to warming  temperature and get disintegrated. This contributes to destabilizing ice sheets and  glaciers, increases glacier flow speed. It is this resulting glacier acceleration that  significantly adds volume to oceans, causing sea level rise.  An ice sheet is a mass of glacial land ice that extend over a huge area. The two ice sheets  on Earth today cover most of Greenland and Antarctica.  An ice shelf is a thick slab of ice, attached to a coastline and extending out over the ocean as a seaward extension of the grounded ice sheet. It’s like a floating white/thick board  that support land ice/prevent it from sliding down to oceans; forming a stable system that  balance outflow, back pressure and/or gravity. The shelves provide buoyant or  hydrostatic force that partially support ice mass. At their seaward edge, ice shelves  periodically calve icebergs.  Because they are exposed to both warming air above and warming ocean below, ice  shelves and ice tongues respond more quickly than ice sheets or glaciers in rising  temperature. This in turn destabilizes the above system, accelerates the tumbling down  and melting of glaciers and ice sheets. Those are generally fresh water ice melting. What about SEA ice?  Sea water is of course darker than ice and therefore it will have a lower albedo, which  means it will absorb more solar radiation, gets warmer and it’s much more difficult to  cool/change temperature. From this trend more longwave radiation will be emitted from  ocean water, causing the atmosphere to be warmer and further accelerate the melting of  sea ice.  Artic sea ice is in danger *sad face* Now move on to the impacts that sea level rise create and the solutions.  Many large communities are located near the coast. However, not all will be affected by  sea level rise. Those communities that live in areas that are near or even below current  sea level will be much worse off than those that are high above (cliffs). Some coastal areas will eventually sink or disappear. Here are the implications to why this will  happen:  As water rises, high tides will become higher and waves that reach the coast will be with  greater energy. So waves have a greater chance to erode, destroy land and cause flooding.  This process is worsened by the following human activities (that will cause sinking): oil  and water extraction, sand mining, urbanization that leaves little to no room for  deposition of matter by ocean. Some typical suffering for us humans:  No more vacations to beaches, beach houses or laying on sand tanning *ugly crying*.  Cities that depend upon beaches for tourism like City of Miami Beach will lose their  economic base. Some other businesses can also be negatively affected like mortgage  companies.   Coastal regions with an agricultural economy will suffer from flooding.  Ground water reservoirs will be mixed with salt water because of its intrusion *flip table*  The loss/damage of infrastructure, relocation of people, adaptation actions and scarcity of resources (water) can lead to billions of dollars in cost. There have been long term and short term solutions to SLR:  Short term: build hard structures like sea walls (not very applicable in many areas), build  and drain canals, bridges, flood gates or elevate living area in general. Some can be very  expensive and some can cause additional environmental problems like destroying  ecosystems.  Long term: using soft structures like beach nourishment (rainbow pumping or ship to  shore pipeline that transport sand from ocean floor to land and enlarge coastal areas;  encourage beach dune development; have setbacks for development. Most importantly,  do not build anywhere near beaches and let room for oceans to migrate and transport  materials on their own. In Dr. Yearwood’s words, let nature has her way!


Buy Material

Are you sure you want to buy this material for

50 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Bentley McCaw University of Florida

"I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"

Amaris Trozzo George Washington University

"I made $350 in just two days after posting my first study guide."

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Parker Thompson 500 Startups

"It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.