Limited time offer 20% OFF StudySoup Subscription details

UMD - AOSC 123 - Final Study Guide AOSC123 - Study Guide

Created by: Trang Le Elite Notetaker

> > > > UMD - AOSC 123 - Final Study Guide AOSC123 - Study Guide

UMD - AOSC 123 - Final Study Guide AOSC123 - Study Guide

0 5 3 19 Reviews
This preview shows pages 1 - 4 of a 18 page document. to view the rest of the content
background image   AOSC123 FINAL EXAM REVIEW   Now that we’ve learnt about scientific knowledge on implications of climate change such as  water vapor, greenhouse gases etc, we will be tested on a major topic for this Final exam:  basically how we approach this matter both from scientists perspective (the reports, the models,  IPCC) and from communities perspective (vulnerability, adaptation, mitigation, resilient). IPCC  report is the core of almost everything we learnt this second part of the semester!  PLEASE NOTE that there will be certain concepts from the first exam that you should remember  for this exam! If you don’t know what they are, you can either find out through looking at the  materials below (pretty sure it will ring a bell), or you can check Dr. Pinker’s last lecture for  reference (maybe my first exam review too, it’s out there)  A.  One way for the scientists to study and to convey what they found on climate change  implications such as effect/amount of greenhouse gases or sea level rise is through  MODELS:  Here we will recall the difference between weather forecasting and climate prediction, and find  out more (again) about climate models and what we can understand from them.    Definition of a model: it’s a conceptual and qualitative description of a system that  provides some understanding of how the system works but does not allow one to describe  its detailed behavior. Basically it’s like a commercial, it introduces the products, but you  can never tell what all the ingredients in it are.    Weather: conditions over short periods, such as hours or days. Numerical Weather  Prediction Models (NWP) are used to predict weather.    On the other hand, climate is the average atmospheric conditions measured over a long  time.    General Circulation Models (GCMs) is used to construct climate projections.  Next, we will explore in more details the difference between predicting weather and project  climate conditions (make sense right! They use different models anyways).    For weather prediction, present conditions must be known. To get this, there must be  the following steps: Data acquisition • Assembling Data • Global network of land based 
background image   stations ships and radiosondes • Data analyses. They may use different equipment to get  all measurements they need. Example: radiosondes (remember the balloon thing?)  measuring atmospheric conditions; or observations on oceans taken by buoys (fancy  looking cones floating on oceans).    Three possible weather forecasts: Advisories (potential dangerous conditions); Watch  (atmospheric conditions favoring hazardous weather like flash flood, severe thunderstorm  or tornado); and Warning (occurring hazardous weather over a region in time).    In order to complete the above forecasts, they use Numerical Weather Prediction  (NWP) Models. It is used because it can simulate the primary fields of motion in the  atmosphere. It is implemented on a grid with constant grid spacing in latitude and  longitude (representing as units for what is happening).    Forecasts are not always correct! Also, different models forecast different values.  Now let’s look at climate models   GCM – General Circulation Model (sometimes Global Climate Model) which includes  the physics of the atmosphere and often the ocean, sea ice and land surface as well.    Ensemble model: a single run of the climate model that represents only one range of  possible outcomes. It is usually constructed with ensemble mean taken from several  ensemble runs.     The reason why its use is necessary in predicting climate change is because climate  models are not perfect and are mostly always subject to have uncertainties. Ensemble  runs use a range of values for climate parameters that have uncertainties.  Here, we will use GCM throughout the whole review because it is the primary major type of  model that is employed for analysis in the IPCC report of 2007 and 2013 – the backbone of our  review. Wait, what is the IPCC you ask? We’ll touch on it very soon! Remember, all the  information under here revolves around 3 big ideas: climate change (how it’s predicted, are there  any limits/critics to it and how it affects us), IPCC (mainly its 2013 report) and the GCM models  predictions.  
background image     GCM model is a combination of Atmospheric General Circulation Models (AGCMs) and  Ocean General Circulation Models (OGCMs). That’s why sometimes GCM is also called  Atmosphere–Ocean General Circulation Model (AOGCM).    Like when you make anything else, you must think about what is needed. Same here for  GCM: what is needed to construct such model? The answer is we are not sure, it’s a very  complex matter. But the scientists have to make them anyways, and that’s why they use  what’s called Parameterization to build their GCMs: it’s a method in which a known  variable and an unknown one is compared with each other for an observed relationship;  data is collected and combined into a form of a sub-grid scale for parameterization. Still  sound too abstracts? Here’s an example: clouds is used for analysis of humidity and  temperature base on today’s observation of the climate. Here’s an image of IPCC report  2007 part A Clouds (sub-grid scale):      Ensemble runs and ensemble models are accounted for the variability and error part of  GCM.     Lately, GCM models are developed to become Earth System Models, basically a  summative big model that includes a variety of sub-models from different areas for  prediction of climate as a whole (atmosphere, land surface, ocean, aerosols, carbon cycle,  dynamic vegetation etc). This helps to construct a broader, better picture of climate  change with different areas corresponding to each other.    GCMs models are developed globally and they all come together in one big report.  Someone needs to compile all of these complex yet sophisticated stuff together plus  review them right? *drum roll please* The Intergovernmental Panel on Climate 
background image   Change (IPCC)! It’s in charge of reviewing and assessing “the most recent scientific,  technical and socio-economic information produced worldwide relevant to the  understanding of climate change”. And when you think about it, hundreds of scientists  worldwide gather data from many parts of the world to create an IPCC report. But not all  of them can have the same predictions: some are cheerfully similar, but some are  different and even worse, some are conflicting. That’s why, besides sticking to what’s  happening with climate change, the IPCC’s purpose is also to provide an overall  agreement, or consensus, on the scientific view of global warming.     There are THREE working groups that contribute to the IPCC report: Working Group I  Report on The Physical Science BasisWorking Group II Report on Impacts,  Adaptation and Vulnerability and Working Group III Report on Mitigation of Climate  Change. The report is also divided into three parts: Part A for Physical Science stuff, Part  B for the history of climate change and Part C for vulnerabilities, adaptation and  mitigation.  Enough with the introduction, let’s dig deeper into IPCC report!    The latest one is the 2013 IPCC report. It builds from the last IPCC report which was  released in 2007.  Therefore, there’s a need to understand briefly what was found in IPCC 2007, and from there  continue to what the IPCC 2013 has to say. First, let’s look at the information from Group I  about the findings in physical science:    The following are summaries of what was established in IPCC 2007    Changes in atmosphere: greenhouse gases have increased significantly from pre- industrialized time. Three notable ones are carbon dioxide, methane and nitrous oxide  (also recall that the two gases that regulate greenhouse effect are water vapor and CO2).  The sources of the increase in carbon dioxide are fossil fuel use and land use. Also, the  primary source of the increase in methane is very likely to be the result of a combination  of agricultural activities and fossil fuel.    There’s a general warming of the earth, or global warming is happening: there’s an  increase in temperature. Hot days, hot nights, and heat waves have become more 

This is the end of the preview. Please to view the rest of the content
Join more than 18,000+ college students at University of Maryland who use StudySoup to get ahead
School: University of Maryland
Department: Atmospheric and Oceanic Science
Course: Causes and Implications of Global Change
Professor: Rachel Pinker
Term: Winter 2016
Name: Final Study Guide AOSC123
Description: For those who haven't taken the exam yet, Here's a study guide to help you ace it! I try to summarize key points and add a little fun to it so go check it out!
Uploaded: 05/17/2016
18 Pages 131 Views 104 Unlocks
  • Better Grades Guarantee
  • 24/7 Homework help
  • Notes, Study Guides, Flashcards + More!
Join StudySoup for FREE
Get Full Access to UMB - AOSC 123 - Study Guide
Join with Email
Already have an account? Login here
Log in to StudySoup
Get Full Access to UMB - AOSC 123 - Study Guide

Forgot password? Reset password here

Reset your password

I don't want to reset my password

Need help? Contact support

Need an Account? Is not associated with an account
Sign up
We're here to help

Having trouble accessing your account? Let us help you, contact support at +1(510) 944-1054 or

Got it, thanks!
Password Reset Request Sent An email has been sent to the email address associated to your account. Follow the link in the email to reset your password. If you're having trouble finding our email please check your spam folder
Got it, thanks!
Already have an Account? Is already in use
Log in
Incorrect Password The password used to log in with this account is incorrect
Try Again

Forgot password? Reset it here