New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here


by: Spurthi Pasham

StudyGuide2 Biochemistry I

Spurthi Pasham

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

There's a google docx for there notes but I pasted them into the word docx.
Biochemistry I
Mehmet CandasJiyong Lee
Study Guide
50 ?




Popular in Biochemistry I

Popular in Biochemistry

This 16 page Study Guide was uploaded by Spurthi Pasham on Saturday July 16, 2016. The Study Guide belongs to Biochemistry I at University of Texas at Dallas taught by Mehmet CandasJiyong Lee in Summer 2016. Since its upload, it has received 37 views. For similar materials see Biochemistry I in Biochemistry at University of Texas at Dallas.


Reviews for StudyGuide2


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 07/16/16
TOPICS • Protein Secondary, Tertiary and Quaternary Structure; Chapter 6 • Enzyme Kinetics; Inhibition Kinetics; Irreversible Inhibition; Bisubstrate Kinetics; Chapter 13 • Enzyme Mechanisms; Chapter 14 Please update study guide as per review session  .1. What is the configuration of peptide bonds in proteins? “Alpha carbons of adjacent residues are almost always in trans configuration” ­ Ch. 6,  slide 14 Otherwise there is steric hindrance. Trans is lower energy configuration. The configuration of peptide bonds in proteins refers to the 1' amino acid sequence .2. How is the conformation of the backbone of a polypeptide described?  “The angle about the a C­N bond is denoted by Greek letter phi , and angle about the  aC­oC is denoted by psi… entire path of peptide backbone is protein is known if the phi and psi  rotation angles are specified. Some values of phi and psi are not allowed due to steric  interference between nonbonded atoms” ­ Ch. 6, pg. 137 .3. What does Ramachandran plot display? aka [φ,ψ] plot Shows sterically reasonable values of the angles phi and psi. “Most combinations of phi and psi  are sterically forbidden, and the corresponding regions of the Ramachandran plot are sparsely  populated” ­ Ch. 6, pg. 13 7 4. What is rise and pitch on helix axis of a polypeptide? How do they affect the helical turn  number on a polypeptide with a given number of amino acids? Rise= how far the helix is going up, esp. per residue, (advances per AA residue) (1.5  Angstroms or 0.15 nm) Pitch= rise/turn (advances per turn)  (0.54 nm or 5.4 Angstroms) “The backbone loop closed by any H­bond in an alpha helix contains 13 atoms”­­chapter 6 lecture slides. So small rise values should take up less physical space, but the turn numbers  would be the same for a given number of amino acids. When more helical strands intertwine,  the number of residues per turn decreases­­ for example, collagen (three intertwined alpha  helixes) only has 3.3 residues per turn, so it’s much more stretched out than an alpha helix by  itself. .5. Why proline is not often found in α­helices of proteins? Proline and glycine  are commonly classified as  “helix­breakers”, but proline is the only  amino acid that only operates as a helix breaker. (To whomever was curious to why glycine is  also considered a helix breaker, it is because it is so flexible that it ends up disrupting the helix) Proline has a five member nitrogen containing ring. Its side chain connects to protein  backbone twice, and it can’t occupy main chain conformations as easily as other amino acids  can. It can introduce kinks into alpha helices because it can’t adopt normal helical  conformations.  .6. What is leucine zipper? What type of proteins exhibit leucine zipper structure? The leucine zipper is a common three­dimensional structural motif in proteins and it has that  name because leucines occur every 7 amino acids in the dimerization domain. The localization  of the leucines are critical for the DNA binding to the proteins. Leucine zippers are present in  both eukaryotic and prokaryotic regulatory proteins, but are mainly in eukaryotes. Leucine Zippers are a class of proteins that bind to DNA at specific sites within the promoters of  genes. When the protein is bound to the promoter, transcription is stimulated and the gene is  "expressed". This class of DNA binding proteins gets its name from the regular pattern of  leucine residues within the two alpha helices. Being hydrophobic, the leucines cause two  adjacent alpha helices to be "zippered" together by hydrophobic interactions. .7. What are the principal forces holding subunits of an oligomeric protein? Hydrophobic interactions .8. How can we experimentally estimate the molecular weight of oligomeric proteins? What is  the methodology? Gel filtration chromatography ­ when an aqueous solution is used to transport the sample  through the column; results in the fractionation of proteins and other water­soluble polymers.  This is separation based on size.  → is less sensitive way to determine the molecular weight of the assembly .9. How can we experimentally determine the molecular weight of each chain of oligomeric  proteins? SDS determines weight of each chain. Sds gel electrophoresis        ch.5 → To separate polypeptide chains and estimate molecular weight, is considered more  accurate  .10. What is the methodology? .11. Why do many proteins have multiple subunits?  1. Because they create overall a more stable structure 2. Genetic economy and efficiency 3. Cooperativity 4. Bring catalytic sites together 12. What are proteins segments? What is their role in protein folding? The segments of a protein that are not helices or sheets are traditionally referred to as “random  coil”, although this term is misleading: •Most of these segments are neither coiled or random •They are usually organized and stable, but don’t conform to any frequently recurring pattern •Random coil segments are strongly influenced by side­chain interactions with the rest of the  protein The conformational entropy associated with the random­coil state significantly  contributes to its energetic stabilization and accounts for much of the energy barrier to protein  folding.  Protein segments are small bits of proteins that frequently have the same amino acid  sequence that affect how the protein folds. For instance, a segment of hydrophobic amino  acids is going to fold inwards due to hydrophobic forces, which alters the shape of the entire protein. 13. What is the function of chaperone proteins? Molecular Chaperones Are Proteins That Help Other Proteins to Fold. They protect  nascent proteins from the concentrated protein matrix in the cell and perhaps to accelerate slow steps. Chaperone proteins were first identified as "heat­shock proteins" (Hsp60 and Hsp70) .14. How do proteins fold fast? Funnel­like energy landscape example: at the top=unfolded proteins, once polypeptide  start falling down the funnel walls results in the 1st contact between the residues that establish  different folding possibilities. Then partial intermediates are formed representing the tertiary  structure. Once the polyp. Came to the bottom, it forms the folding structure which is the  quaternary structure. Proteins fold rapidly into correct, minimal energy configurations because amino acids interact locally due to physiological and chemical properties Cooperativity limits conformation spaces protein has to explore (otherwise it would take  way too long) and forces them to follow funnel like energy landscape that allows it fold quickly.  15. How do reactions progress in terms of free energy? When gibbs free energy is negative ( spontaneous), the folded state is more stable than the  unfolded. Therefore, the folded state is preferred. As gibbs free energy decreases it allows the  proteins to fold more. 16. What do the peaks and valleys of an energy vs reaction progression plot correspond? Represents the graph free energy vs progress of reaction from ch 13. And how the free energy  of activation for the reaction it is greater without an enzyme involved. Peaks = transition states Valleys = Intermediates 17. How are the favorable and unfavorable reactions defined in terms of free energy? Favorable =when delta G is negative (exergonic)  Unfavorable = when delta G is positive  (endergonic)  .18. What is meant by diffusion­controlled reaction? Aka Diffusion limited enzyme catalysis •A diffusion limited enzyme catalyzes a reaction so efficiently that the rate is limited to substrate  diffusion into the active site, or product diffusion out. •This is also known as kinetic perfection or catalytic perfection. •Diffusion­controlled reaction, therefore represents an intrinsic, physical constraint on evolution.  In other words, there is an apparent maximum peak height in the fitness landscape. ­No other factors really affect the diffusion other than the substrate/ligand concentration in the  active site; most efficient possible .19. What is reaction order?         Reaction order is the index or exponent to which the concentration term of the rate equation is  raised to  Hanes woolf equation .20. How is the reaction velocity described according to reaction order? Zeroth ­ Constant  First ­ Linear  Second ­ Exponential .21. How do enzymes accelerate reactions? “Enzymes lower ΔG‡ [free energy of activation], thereby accelerating rate.” (Ch 13, slide 6) They stabilize the transition state, thus lowering the activation energy. .22. What is the lock and key model of enzyme catalyzed reactions?     The “Lock and key” hypothesis was the first explanation for specificity. Only the correctly sized key (substrate) fits into the keyhole (active site) of the lock (enzyme). The binding of the  substrate to the enzyme causes a change in conformation.  .23. Why does the formation of an enzyme­substrate complex tend to be thermodynamically  favorable?           Desolvation is the process where in an aqueous solution containing an enzyme and a substrate, water that is surrounding the substrate is replaced by the enzyme. In other words, water  molecules that were once in between the substrate and the enzyme are displaced to allow the  interaction of the substrate with the enzyme. The process also increases the entropy of the  reaction, making the formation of the enzyme­substrate complex more  thermodynamically favorable. (I thought formation of ES resulted in a loss of entropy,  causing destabilization of ES and therefore increasing the rate of reaction and making it  thermodynamically favorable? Ch 14)  •Enzymes catalyze thermodynamically favorable reactions, causing them to proceed at  extraordinarily rapid rates •Enzymes provide cells with the ability to exert kinetic control over thermodynamic  potentiality .24. What is the Michaelis­Menton equation? .25. What characteristics of enzyme catalysis can be learned from Michaelis­Menton plot? Km and Vmax  .26. What are the linear transformations of the Michaelis­Menten curve? Take the reciprocal of the Michaelis­Menton equation and you get a Lineweaver­Burk plot. Or multiply lineweaver burk by [S] and get a Hanes­Woolf plot. .27. Why is the linear transformation of the Michaelis­Menten curve useful? Linear transformations are easier to read, draw, and use. .28. What does KM describe for an enzyme catalyzed reaction? •The "kinetic activator constant" •Km is a constant derived from rate constants •Km is, under true Michaelis­Menten conditions, an estimate of the dissociation constant  of E from S •Small Km means tight binding; high Km means weak binding KM is the M­M constant; it is the concentration at which the rate of the process equals  half of the maximum rate. .29. What are the mechanisms of enzyme catalysis? •Enzymes facilitate formation of near­attack complexes which is the precursor for the  transition state •Protein motions are essential to enzyme catalysis •Covalent catalysis ­ phosphorylation •General acid­base catalysis •Low­barrier hydrogen bonds ­ LBHBs can occur when the pKa of the two heteroatoms are  closely matched, which allows the hydrogen to be more equally shared between them. the  formation of a LBHB could form during catalysis to stabilize a transition state  •Metal ion catalysis ­ specific mechanism that utilizes metalloenzymes with tightly  bound metal ions such as Fe , Cu , Zn , Mn , Co , Ni , Mo  (the first three being  the most commonly used) to carry out a catalytic reaction .30. What groups on amino acids can make good nucleophilic catalyst? The side chains. These groups readily attack electrophilic centers of substrates, forming  covalent enzyme­substrate complexes.  ­Includes amines, carboxylates, aryl and alkyl hydroxyls, imidazoles, and thiol groups  Serine, Cysteine, and Threonine 31. What is acid­base catalysis in enzyme reaction? Catalysis in which a proton is transferred in the transition state. "Specific" acid­base catalysis involves H+ or OH­ that diffuses into the catalytic center. "General" acid­base catalysis involves acids and bases other than H+ and OH­. These other acids and bases facilitate transfer of H+ in the transition state. .32. Why can the imidazole side chain of histidine can function as either a general acid catalyst  or a general base catalyst? Because the pKa is so close to neutral (amphoteric). At physiological pH range, the nitrogen ring can be easily protonated/deprotonated .33. What is the reaction equilibrium in enzyme catalysis? The rate of catalysis rises linearly with substrate concentration but levels off at higher  concentrations. Saturation effect→ V doesn’t increase even when substrate concentration  increases because the active site is saturated and every enzyme molecule has its active site  occupied with substrate.   k1=k2 34. How will the pH vs. velocity curve look if an enzyme­catalyzed reaction requires a group with a low pK and a group with a higher pK? Enzymatic Activity is Strongly Influenced by pH •Enzyme­substrate recognition and catalysis are greatly dependent on pH •Enzymes are usually active only over a limited range of pH •The effects of pH may be due to effects on Km or Vmax or both The optimal pH is different for every reactant. The curve would reach a maximum at a pH within it’s ideal functioning range and decrease at  higher pHs due to denaturation?   35. What type of amino acids are involved in the catalytic step of an enzyme reaction if pH vs.  velocity curve displays an inflection point at pH~4? Acidic; A pH vs. Velocity curve with inflection point at pH 4 will have an amino acid on the active site with a pka of 4 because inflection points on the curve occur at the pka’s of the amino acid. Inflection points on pH vs. velocity curves occur at the pKas of the amino acids, so a pH vs.  velocity curve with an inflection point at pH 4 will have an amino acid on the active site with  a pKa of 4 36. What are the physical determinants of reaction rate in terms of reacting groups involved in a  given enzymatic catalysis? Concentration of reacting molecules with transition state energy (slide 25, ch 13)  37. What are the differences between competitive, uncompetitive, noncompetitive, and  irreversible enzyme inhibition? How do different inhibition types change the 1/V vs 1/[S] plot? Ch 13 slides 61­64 Competitive Inhibitors Compete With Substrate for the Same Site on the Enzyme ­same y­intercept as uninhibited enzyme, since Vmax is not affected by competitive inhibition,  1/vmax does not change ­different slopes and x­intercepts ­because the inhibitor is similar to substrate, the substrate can’t be acted on by enzyme and  there are fewer active sites available for it to bind to ­need to increase substrate concentration in order to achieve reaction rate  Pure Noncompetitive Inhibition – where S and I bind to different sites on the enzyme. Note  that I does not alter Km but that it decreases Vmax. Mixed Noncompetitive Inhibition: binding of I by E influences binding of S by E. Note that  both intercepts and the slope change in the presence of I. ­can’t overcome by increasing substrate concentration ­enzyme substrate inhibitor complex (new entity form)  ­doesn’t go to products form ­decreases efficiency of reaction, changes processivity, not Mm concentration (?)  Uncompetitive Inhibition, where I combines only with ES, but not with E. Note that both  intercepts change but the slope (Km/Vmax) remains constant in the presence of I. Enzymes Can Be Inhibited Irreversibly. Penicillin is an irreversible inhibitor of the enzyme  glycoprotein peptidease, which catalyzes an essential step in bacterial cell wall synthesis. ­form “permanent”  covalent bonds with side chains or prosthetic groups in enzyme ­decreases concentration of active enzyme ­can be distinguished from noncompetitive b/c reaction of I with E is not instantaneous ­time dependency decreases enzymatic activity  `­dilution of enzyme: inhibitor solution doesn’t dissociate EI complex/restore enzyme activity .38. What are transition­state analogs? What is their affinity towards their interaction with  reaction components? Transition state analogs (TSAs) are stable molecules that are chemically and structurally similar to the transition state Purine riboside inhibits adenosine deaminase. The hydrated form is an analog of the transition  state of the reaction. TSA’s have a higher affinity for enzymes because enzymes have an especially favorable  interaction with transition states in a particular reaction. Since the TSA mimics the transition  state, enzymes have a higher affinity for the TSA. .39. What is a competitive inhibitor? How does it affect Vmax of an enzyme catalyzed reaction? Inhibitor molecule similar to the substrate but unable to be acted on by the enzyme competes  with the substrate for the active site. Because of the presence of the inhibitor, fewer active sites  are available to act on the substrate. Higher substrate concentration is required to achieve a  given reaction rate. Competitive inhibitors have the same y­intercept as uninhibited enzyme  (since Vmax is unaffected by competitive inhibitors the inverse of Vmax also doesn't change)  but there are different slopes and x­intercepts between the two data sets. Compete with the substrate for the same active site on the enzyme  40. What is an irreversible enzyme inhibitor? How does it bind to the enzyme? Irreversible inhibitors bind permanently to their target enzyme, often via a covalent bond that  influences catalysis. "Permanently" here means over a time­scale that is long compared to the  functional lifetime of the enzyme itself; that timescale may be minutes for some bacterial  enzymes, and months or years for enzymes found in stationary populations of cells in  eukaryotes. Irreversible inhibitors can give us some understanding of enzyme function, and they can be employed as pharmaceuticals, but they are less informative and less common than  reversible inhibitors.  Penicillin is an irreversible inhibitor of the enzyme glycoprotein peptidease, which catalyzes an  essential step in bacterial cell wall synthesis. It binds to the peptide bond, but the enzyme  remains inactive. 41. What is the uniqueness of enzyme catalyzed reactions in comparison to typical chemical  catalyzed reactions in organic chemistry? Enzymes are highly specific and produce large amounts of product while chemical catalysts are  less specific and can produce more errors -biological specificity, occur batch wise, and have 2-3 orders  .42. What is the Michaelis­Menton constant? KM is the M­M constant; it is the concentration at which the rate of the process equals half of  the maximum rate. .43. Which step in an enzyme­catalyzed reaction was assumed to be negligible by Michaelis  and Menton? Formation of ES from E + P (backward) k­2 .44. What are the assumptions made in calculating the Michaelis­Menten Equation? ­assumes the formation of an enzyme­substrate complex  ­assumes that the ES complex is in rapid equilibrium with free enzyme  ­assumes that the breakdown of ES to form products is slower than  1) formation of ES and (k1>k2) 2) breakdown of ES to re­form E and S” (Ch 13, slide 33) ( k2 < k­1) 45. Can you calculate the value of the maximum velocity for an enzyme­catalyzed reaction that  follows Michaelis­Menton kinetics if the initial velocity, substrate concentration, and KM for the  enzyme system is given? Vmax= Vo((Km+[S])/[S]) 46. What are the differences in terms of substrate binding and processing between random,  sequential, ordered, and ping­pong reaction mechanisms? Sequential, or Single­displacement reactions can be of two distinct classes: 1. Ordered, where a leading substrate binds first, followed by the other substrate 2. Random, where either substrate may bind first, followed by the other substrate Double­Displacement (Ping­Pong) reactions proceed via formation of a covalently modified  enzyme intermediate. ­Product of enzyme reaction with A is released before enzyme reacts with second substrate;  there are two half reactions and the substrates don’t react directly with each other  47. Do allosteric enzymes follow typical Michaelis­Menten kinetics? No, because they don’t bind to the active site, rather they bind to the allosteric site. .48. What happens to the rate of an enzyme­catalyzed reaction if substrate depleted steadily  with time?  The rate on an enzyme catalyzed reaction is proportional to the substrate. The rate decreases  linearly as substrate concentration decreases and then begins to level off and approach a  minimum. If the substrate concentration of an enzyme­catalyzed reaction decreases steadily with time, the reaction rate drops very rapidly (think quadratic or cubic rather than linear) 49. How is the rate of breakdown of the enzyme­substrate complex denoted? The rates of formation and breakdown of the ES complex are given in terms of known quantities:  The rate of formation of E­S =k1[E][S] (with the assumption that [P] =0)  The rate of breakdown of E­S = k 2[ES]+k 3[ES]=(K 2+K 3)[ES] The rate of breakdown of the enzyme substrate complex is denoted as k2 (the  formation of it is k1) .50. What the steady state assumption is as applied to enzyme kinetics? the ES complex is formed and broken down at equivalent rates. (forward rate = reverse) k1=k2 51. What type of amino acids can be found on the surface of a single­subunit protein? Give  examples. Hydrophilic amino acids Polar AA: Glutamine, Asparagine, Serine, Threonine, Cysteine, Methionine  52. Which amino acid is the most conformationally­restricted? Proline 53. What are the corresponding energy levels of reactant, transition state, intermediate, and  product on an energy diagram? Ch 13  (Really general question) 54. Which amino acid(s) is/are least likely to participate in acid­base catalysis? , it should be any non­polar, hydrophobic amino acids such as alanine(most unreactive) or  leucine. Amino acids that don’t have acidic or basic side chains: the amino acids with aliphatic and  aromatic side chains and the amino acids with polar neutral side groups  55. Why is histidine an ideal amino acid at neutral pH values at the active site of many  enzymes? An active­site histidine, which might normally be protonated, can be deprotonated by another  group and then act as a base, accepting a proton from the substrate. 56. What is the use of methodology called site­directed mutagenesis? Site­directed mutagenesis (SDM) is a method to create specific, targeted changes in double  stranded plasmid DNA. There are many reasons to make specific DNA alterations (insertions,  deletions and substitutions), including:  To study changes in protein activity that occur as a result of the DNA manipulation.   To select or screen for mutations (at the DNA, RNA or protein level) that have a desired  property  To introduce or remove restriction endonuclease sites or tags 57. If an enzyme's active site contains only two ionizable residues, an arginine and a glutamate  (pKa's of 2.9 and 9.1, respectively) that participate in the catalytic mechanism, what would you  expect for the optimum pH of the enzyme? A pH midway between 2.9 and 9.1 (pH = 6), where arginine is deprotonated and glutamate is  protonated. (answer confirmed in lecture)


Buy Material

Are you sure you want to buy this material for

50 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Bentley McCaw University of Florida

"I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"

Allison Fischer University of Alabama

"I signed up to be an Elite Notetaker with 2 of my sorority sisters this semester. We just posted our notes weekly and were each making over $600 per month. I LOVE StudySoup!"

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."


"Their 'Elite Notetakers' are making over $1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.