New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here


by: Spurthi Pasham

StudyGuide3 Biochemistry I

Spurthi Pasham

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

There is a google docs for this but I here are the notes on the Word document.
Biochemistry I
Mehmet CandasJiyong Lee
Study Guide
50 ?




Popular in Biochemistry I

Popular in Biochemistry

This 14 page Study Guide was uploaded by Spurthi Pasham on Saturday July 16, 2016. The Study Guide belongs to Biochemistry I at University of Texas at Dallas taught by Mehmet CandasJiyong Lee in Summer 2016. Since its upload, it has received 35 views. For similar materials see Biochemistry I in Biochemistry at University of Texas at Dallas.


Reviews for StudyGuide3


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 07/16/16
1. Which amino acid residues do kinases phosphorylate? Kinases phosphorylate Serine, Threonine, and Tyrosine. Chapter 15 Slide #43. Kinases typically recognize specific amino acid sequences in their targets. In  spite of this specificity, all kinases share a common catalytic mechanism based on a  conserved core kinase domain of about 260 residues. 2. What are zymogens? Zymogens are the inactive precursors to functional enzymes. Chapter 15 Slide #8 Proteolytic cleavage produces the active enzyme. 3. How are opposing anabolic and catabolic pathways with shares reactions regulated?  What type of enzymes in such reactions serve as the point of regulation? The opposing pathways use two different enzymes. When one enzyme is in use the  other is turned off in order to have only one pathway that is functioning. The cells  regulate the pathways this way to avoid wasting the precursor molecules (If it was not  regulated this way then the [S] would determine which pathway is enabled not by the  energy requirements of the cell). Anabolic and Catabolic pathways share 9 out of the 11  steps of glucose metabolism. Allosteric enzymes serve as the point of regulation. (Not 100% sure) ← I think this is  correct 1. Cell maintains tight and separate regulation of both catabolism and anabolism  2. Competing metabolic pathways are isolated and localized within different cell  compartments (ch 17, section 3)  4. Are the reactions serving as flux control points considered reversible or irreversible? “Generally, enzymes that catalyze essentially irreversible steps in metabolic pathways  are potential sites for regulatory control”. Control points are IRREVERSIBLE. Flux through a metabolic pathway can be regulated in several ways: i. availability of substrate ii. concentration of enzymes responsible for rate limiting steps iii. allosteric regulation of enzymes iv. covalent modification of enzymes (phosphorylation, acetylation, methylation, etc.) (Ch 18, Slide 44) 5. What are the important characteristics of reaction steps that serve as control points in  pathways? Reactions that serve as control points in a pathway must have a large – ΔG, such as pyruvate  kinase in glycolysis. This is because when the reaction is inhibited, it will stop, whereas  reactions with a small ΔG close to zero would just go the other direction. Each enzyme required for a step in a metabolic pathway is a point of control of the overall  metabolic pathway when each step in the overall process (pathway) is essential. 6. What is the effect of H+ on oxygen binding to hemoglobin? How and where is this H+  generated?  The H+ lowers the affinity of hemoglobin to oxygen because the pH is lowered below 7.4 (physiological pH). The H+ is generated by high concentrations of CO2 in the blood. The CO2  in tissues react with water to form Carbonic acid which dissociates into bicarbonate and H+.  Thus a high [CO2] corresponds to a high [H+]. It affects most of the body (think tissues) except  for the lungs where [O2] can constantly be replenished. (There maybe somewhere else that I  forgot). This is essentially the Bhor effect I think we went over it with Dr. Wilson in Bio II.  Deoxyhemoglobin has a higher affinity for protons (H+) than it does for oxygen (O2), and so, as pH decreases, the dissociation of oxygen from hemoglobin is enhanced. This  phenomenon is called the Bohr Effect.  The protons that affect hemoglobin can come from many different sources, such as  lactic acid during extensive physical excursion of the muscles. But the most common  origin of protons comes from the byproduct of aerobic respiration known as carbon  dioxide (CO2).  Carbon dioxide is acted on by the enzyme Carbonic Anhydrase to turn it Carbonic Acid  (H2CO3). Many of the protons formed upon ionization of carbonic acid are picked up by  hemoglobin as oxygen dissociates.  The Bohr Effect is an important physiological phenomenon because as tissues are under active metabolism, they produce acids as waste products and so will require additional  oxygens to increase energy production. It is postulated that the N­termini of the two α­ chains and Hisβ146 are the major players in the Bohr Effect. 7. What is the link between cGMP Phosphodiesterase inhibitors and blood pressure? cGMP stays longer to relax smooth muscle (from Candas Lecture) cGMP Phosphodiesterase acts to convert cGMP to regular 5’GMP. The importance of cGMP in  controlling blood pressure is seen in the NO pathway. NO reversibly binds to and activates  soluble Guanylyl Cyclase, which converts GTP to cGMP. cGMP can then be used to relax the  smooth muscles surrounding the blood vessels, leading to Vasodilation. As vasodilation occurs,  there is greater blood flow due to decreased resistance, and DECREASED blood pressure. If  cGMP Phosphodiesterase Inhibitors are present, there would be a greater concentration of  cGMP, and so there would be more prolonged periods of vasodilation, and a DECREASE of  blood pressure. 8. How is hemoglobin involved in blood vessel dilation?   Hemoglobin is involved in blood vessel dilation by facilitating the movement of Nitric  Oxide (NO) to the endothelium that surrounds blood vessels.  NO has a large affinity for Hb, but only on the sulfhydryl (thiol) group of amino acid  residue of Cys 93β, and only when Hb is bound with oxygen (oxygenated hemoglobin is  the R state of Hb). When oxygen is released from the hemoglobin, it changes  conformation to its T state, decreasing the affinity for NO significantly as well.  NO then binds to a small­molecule thiol, which then carries the NO all the way to the  endothelial receptors of the endothelium surrounding the blood vessel, and through a  pathway, results in relaxation and capillary vasodilation. 9. What are the characteristic of allosteric enzymes? Allosteric enzymes, which mostly have two or more subunits, can oscillate from active form to  inactive form. 1. their v vs. [S] plots have a sigmoidal (S shaped) curve caused by their cooperative nature. 2. inhibition of the regulatory enzyme by a feedback inhibitor does not conform to any normal  inhibition pattern and is actually a form of Allosteric Inhibition 3. regulatory enzymes can be inhibited, but then can also be activated 4. these enzymes are typically have an oligomeric organization, with each subunit having its  own substrate binding site and effector binding site. this means that a single enzyme will have  multiple substrate binding site and effector binding sites. 10. How do allosteric effectors influence the apparent value of the equilibrium constant (Kd)? They can INCREASE affinity (a property called Cooperativity): when this happens, Kd  DECREASES with each successive binding of the substrate. They can DECREASE affinity: When this happens, Kd INCREASES with each successive  binding of the substrate. Kd = [R][L][RL], so if more greater binding occurs, it makes sense that Kd would decrease 11. Which coenzymes are used to transfer hydride anions in dehydrogenase­catalyzed  reactions? a. NADH + H ←→ NAD+ b. NADH is the coenzyme that is used to transfer hydride anions to dehydrogenase catalyzed  reactions (this is catabolism). Although FADH can also perform this task as well.  c. NADPH is used in anabolic reactions that require a transfer of hydride anions. Hydrogen and electrons released in the course of oxidative catabolism are transferred as  hydride ions to the pyridine nucleotide, NAD+, to form NADH + H+ in dehydrogenase reactions. 12. What is trehalose? A Natural Protectant. Trehalose is a disaccharide that is made by linking two glucose molecules  head to head. It is a natural component of plants, algae, fungi and bacteria. The mechanisms by which trehalose protects the structural and functional integrity of  biological molecules can be divided into three categories:  Trehalose has a greater flexibility in the glycosidic linkage between the two d­ glucose molecules compared to other disaccharides such as sucrose, allowing  trehalose to conform to the irregular polar groups of those same  macromolecules.  Trehalose is unique in that it forms a nonhydroscopic glassy state instead of  crystallizing glass, stable at high temperatures or desiccation, holding molecules  in a form that allows them to return to a native state and function upon  rehydration.  Trehalose is one of the most chemically stable sugars, as the 1,1 glycosidic  linkage makes it non­reducing. It is highly resistant to hydrolysis and in general  chemically inert in its interactions with proteins. 13. How do allosteric activators and inhibitors change the shape of the activity plots (v  versus S curves)?  In the v versus S curves, allosteric activators and inhibitors are cooperative and thus are  shown to be sigmoidal. This is because allosteric enzymes are cooperative and  therefore do not obey typical Michaelis­Menten kinetics.  Allosteric enzymes contain allosteric sites on top of its active site which can bind the  substrate. When a non substrate molecule to the allosteric site, its function can influence the activity of that enzyme by either activating or impairing them. The activation or  inhibition of an enzyme can then influence the initial rate which is reflected on the graph.  (Sorry for the choppy explanation. I will revise this later). 14. How is the dramatic shape change of protein achieved upon binding of oxygen to  hemoglobin? Very big because “when deoxy­Hb crystals are exposed to oxygen, they shatter.”  Chapter 15 slide #75. Fe moves by 0.039 nm when bound to oxygen. In this slide he says that it is a massive change because “When deoxy­Hb crystals are exposed to oxygen, they shatter.  Evidence of a large­scale structural change.” 15. What is the function of adenylate kinase? Adenylate kinase (also known as ADK or myokinase) is a phosphotransferase enzyme that  catalyzes the interconversion of adenine nucleotides, and plays an important role in cellular  energy homeostasis. Catalyzes reaction: ATP + AMP <­> 2ADP 16. What is the difference between glucokinase and hexokinase? •Hexokinase and glucokinase act to phosphorylate glucose and keep it in the cell. •Hexokinase is normally active because its Km for glucose is 0.1 mM. Cell has 4 mM  glucose. •Glucokinase only turns on when cell is rich in glucose because its Km for glucose is 10  mM. The difference in glucose phosphorylation activity between hexokinase and glucokinase  has physiological importance:  Non­hepatic tissues contain hexokinases, which rapidly and efficiently traps  blood glucose within the cells by converting it to glucose­6­phosphate.  On the other hand, the hepatic tissue/liver has a critical role in delivering glucose  to the blood when it is needed. This is ensured by having a glucose  phosphorylating enzyme (glucokinase) whose Km for glucose is sufficiently  higher than the normal circulating concentration of glucose (5mM). 17. Why do erythrocytes have high level of bisphosphoglycerate mutase activity? •2,3­BPG is formed from 1,3­BPG by bisphosphoglycerate mutase by circumventing the PGK reaction •Most cells contain only a trace of 2,3­BPG, but erythrocytes typically contain 4­5 mM  2,3­BPG. •Because the main function of bisphosphoglycerate mutase is the synthesis of 2,3­BPG,  this enzyme is found only in erythrocytes and placental cells. •2,3­bisphosphoglycerate is an important regulator of hemoglobin •The mutase that forms 2,3­BPG from 1,3­BPG requires 3­phosphoglycerate. The  reaction is actually an intermolecular phosphoryl transfer from C­1 of 1,3­BPG to C­2 of  3­phosphoglycerate. Nomenclature note: a “mutase” catalyzes migration of a functional  group within a substrate 18. What is the role of ATP in the cell? ATP is the cellular energy currency. ATP is formed via photosynthesis in phototrophic cells or  catabolism in heterotrophic cells. ATP cycle carries energy from photosynthesis or catabolism to the energy­requiring processes of cells. Energy­requiring cellular activities are powered by ATP hydrolysis, liberating ADP and Pi. 19. What are the differences in glucose polymerization between cellulose, glycogen or  starch? •Starch and glycogen linkages consist primarily of α(1→4) linkages. • Storage: Starch and glycogen •Cellulose consists of β(1→4) linkages • Structure: Chitin and cellulose a. Cellulose:  i. is composed of beta(1­4) glycosidic linkages between glucose monomers  b. Glycogen:  i. is composed of alpha(1­4) glycosidic linkages between glucose monomers  ii. it also has branching, but differs from amylopectin in the frequency of the branching.  Glycogen has alpha(1­6) branching every 8­12 residues  c. Starch:  i. 2 forms: 1. Amylose a. composed of alpha(1­4) glycosidic linkages between glucose  monomers 2. Amylopectin a. the same as amylose, but has branches of polymers via alpha(1­6) bonds 20. What is the biochemical logic behind isomerization of glucose­6­phosphate to fructose­6­ phosphate? I think this is because the conversion of fructose­6­phosphate is an irreversible step so  that the reaction goes only one way. Glucose­6­phosphate can be used in many ways  within a cell. In this manner the glucose­6­phosphate is targeted specifically for ATP  production from glycolysis by the addition of two phosphate groups. (Again not 100%  sure this is the best explanation.)  * There is more to this i just don’t know how to explain it in words at the moment. a. The conversion of Glucose­6­Phosphate to Fructose­6­Phosphate is favored for two  reasons:  i. The next step in glycolysis is the phosphorylation at C­1, and the hemiacetal­ OH of glucose would be more difficult to phosphorylate than a simply primary hydroxyl ii. The isomerization to fructose activates C­3, facilitating C­C bond cleavage in  the fourth step of glycolysis  b. Pathway of the interconversion:  i.  ii. The enzyme responsible for the isomerization is Phosphoglucoisomerase (aka  Phosphoglucose Isomerase and Glucose Phosphate Isomerase), and in humans  requires the Mg 2+ to function and is very specific for Glucose­6­Phosphate. 21. Why is phosphorylation of G­3­P to produce 1,3­BPG energetically favorable although  no ATP is coupled in the reaction? (Btw, this reaction is facilitated by the enzyme  Glyceraldehyde­3­phosphate dehydrogenase)  a. The thing to understand about this is that it can be seen as a two types of reactions: i. the  oxidation of an aldehyde to a carboxylic acid, which is highly EXERGONIC (energetically  favorable, and although oxidation occurs, only a carboxylic acid derivative is formed) ii. the  formation of phosphoric anhydride and the reduction of NAD + to NADH, which is slightly  ENDERGONIC (basically the actual reaction, which is energetically unfavorable)  b. So, we know that the reaction is endergonic, meaning no free energy is released to the  surround, but the reaction still goes through, without the aid of a reaction coupling. This is  because the oxidation actually releases the free energy that can then be used to drive the  completion of the reaction (basically, the reaction is powering itself). This explains why the  overall reaction may be endergonic as the energy it produces is being used to complete itself,  hence no energy is ever released. 22. Why is hexokinase normally active in the cell, although it is a regulated enzyme? Hexokinase is normally active because its Km for glucose is 0.1 mM. Cell has 4 mM glucose.  (Ch 18, Slide 8) 23. Which compound reflects the net energy gain in glycolysis? ATP reflects the net energy gain in glycolysis, which is 2 ATP. (2 ATP were consumed in the  first stage of glycolysis and the 4 were produced in the second stage of glycolysis) 24. Which enzyme does glucose 6­phosphate exert allosteric inhibition? Hexokinase is regulated/allosterically inhibited by (product) glucose­6­Phosphate. (Ch 18, Slide  10) 25. What will happen in the glycolytic pathway if Phosphofructokinase I is deficient? a. Phosphofructokinase is an essential enzyme in the Glycolysis pathway. If it were deficient,  then obviously the rate of Glycolysis would decrease, as the pathway would be hindered in  terms of rate. However, this isn’t the most important thing to know about Phosphofructokinase.  b. Phosphofructokinase is apparently the most important site in the glycolytic pathway. This is  because it is cooperatively inhibited by ATP. When levels of ATP are high in the cell,  phosphofructokinase is turned off, and so the follow glycolytic pathways following this reaction  are essentially turned off as well, as substrate isn’t being produced anymore.  Phosphofructokinase is known as the “valve” controlling the rate of glycolysis.  c. ATP inhibition of phosphofructokinase can be reversed by the actions of Adenylate Kinase. 26. If an enzyme catalyzed reaction is near­equilibrium, how will it be reflected on substrate  and product concentrations? If an enzyme catalyzed reaction is near equilibrium, then the substrate and product  concentrations will appear to only change very slightly, as equilibrium is when the forward  reaction rate is equal to the reverse reaction rate, causing the appearance that the product and  substrate concentrations are no longer changing. 27. Where is 2,3­bisphosphoglycerate formed? What is its metabolic function? Considering that Erythrocytes have a large number of bisphosphoglycerate mutase, it can be  assumed that 2,3­bisphosphoglycerate is primarily formed in erythrocytes. As to where in the  metabolic pathway, it is a detour around the phosphoglycerate kinase reaction (reaction 7 of  glycolysis). 2,3­BPG is binds to hemoglobin inside erythrocytes to promote the release of O 2 by favoring the deoxy form of hemoglobin. Erythrocytes contain about 4.5 mM of 2,3­BPG, which is about the same concentration of hemoglobin inside erythrocytes. The equivalence is maintained by Hb:BPG stoichiometry in that only one BPG can bind to a hemoglobin tetramer 28. What are the allosteric compounds that stimulate/accelerate glycolytic flux? a. Online  i. Glucose­6­Phosphate 1. High levels of glucose­6­phosphate inhibits Hexokinase activity until  consumption by glycolysis lowers its concentration  ii. ATP and Citrate  1. ATP (at high concentrations) and Citrate both act as an allosteric inhibitor of  Phosphofructokinase  iii. AMP and Fructose­2,6­Bisphosphate (yes, 2,6 according to Dr. Candas’s notes)  1. these both act to activate/reverse inhibition of Phoshpofructokinase  2. Fructose 2,6­Bisphosphate decreases the inhibitory effects of ATP  iv. AMP and Fructose­1,6­Bisphosphate  1. acts to allosterically activate Pyruvate Kinase  v. ATP, Acetyl­CoA, and Alanine  1. acts to allosterically inhibit Pyruvate Kinase  2. hormones such as glucagon activate the cAMP­dependent protein kinase,  which transfers a phosphoryl group form ATP to Pyruvate Kinase, which causes it to be  more strongly inhibited by ATP and alanine and has a higher K m for PEP.  vi. Hexokinase, Phosphofructokinase, and Pyruvate Kinase reactions all exhibit large  negative Δ G values under cellular conditions and thus are the sites of glycolytic  regulation.  vii. It should also be noted that Glucose is an important regulator of Glycolysis flux, as  without it, the initial step wouldn’t even begin. And so Insulin and Glucagon, two  hormones that control glucose concentration, are also important in glycolysis regulation.  b. Slides  i. When under hypoxia (extreme lack of oxygen), there is an increase in cellular levels of: 1. Fructose­1,6­Bisphosphate  2. ADP  3. AMP  4. Inorganic Phosphate (Pi)  ii. These molecules exert a series of allosteric stimulations that accelerate the glycolytic  flux, making glycolysis the main source of cellular ATP production  iii. The increase of glycolytic enzymes is also due to increased gene expression for  those particular enzymes as well. Hypoxia Inducible Factor (HIF) is a DNA binding  protein that up regulates the gene expression for these proteins.  1. At high oxygen levels, Prolyl Hydroxylase Dioxygenase (PDH) is activated and inhibits HIF activity 29. When is pyruvate converted to ethanol, or lactate? Pyruvate is converted to lactate in low concentrations or the absence of O2 in order to  create lactic acid and replenish NADH. Anaerobic metabolism of pyruvate leads to lactate (in microorganisms and animals) or ethanol  (in yeast) fermentation – the production of ATP energy by reaction pathways in which organic  molecules function as donors and acceptors of electrons (Ch 18, Slide 39) 30. Is pyruvate more oxidized or reduced than lactate? I believe pyruvate is more oxidized than lactate. In the reaction from pyruvate to lactate,  NADH donates its hydrogen and forms NADH. The loss of hydrogen is an oxidation  which means NADH is oxidized and therefore pyruvate is reduced to lactate because of  the addition of hydrogen. The NADH loses two electrons (oxidized), while the pyruvate gains two electrons  (reduced). This image is from wikipedia. 31. Why is it better for the yeast to convert pyruvate to ethanol rather than to lactate? a. Ethanol can be converted to Acetate, which in turn can be converted to Acetyl CoA, which  can then go into the Krebs’s cycle to produce more ATP. Lactate can only be excreted as  waste. b. Pyruvate reduction to ethanol in yeast provides a means for regenerating NAD+  consumed in the G­3­P dehydrogenase reaction. 32. Which amino acid can be formed from pyruvate? alanine 33. What is Pasteur Effect? Why it has been evolutionarily selected to couple both aerobic  and anaerobic metabolic rates? a. The Pasteur Effect defines the inhibiting effect of oxygen on the fermentation process  b. When Oxygen is in excess:  i. Glucose catabolism feeds Oxidative Phosphorylation, allowing full oxidation of the  substrate, and thereby efficient production of ATP, via the citric acid cycle and electron transport chain.  ii. ATP production increases and the rate of glycolysis slows, because the AT produced  acts as an allosteric inhibitor for phosphofructokinase 1.  c. When Oxygen is limited  i. levels of citrate in the citric acid cycle and the ATP produced via the electron transport  chain are decreased.  ii. Glycolysis is accelerated to compensate for defective ATP production 34. In a metabolic pathway, how is net flux toward product formation ensured? a. This may do with L’Chatelier’s Principle. When the concentration of product declines, the  equilibrium will push for more product to be formed. In a metabolic pathway, a product of one  reaction is the reactant of the subsequent reaction, and so the product concentration of one  reaction is always decline, thus the reaction is always being pushed in the forward direction, or  product formation.  b. It should be noted that reactions 2 and 4 through 9 of glycolysis operate at near equilibrium  (since their Δ G is close to zero), and it is this near equilibrium that allows the reactions to  proceed in both directions, making both Glycolysis and Gluconeogenesis possible. 35. Why is 2­Phosphoglycerate converted/rearranged to phosphoenolpyruvate (PEP) by  enolase? •Enolase rearranges 2­PG to PEP, which releases more energy in hydrolysis. •In other words, enolase makes a high­energy phosphate by converting 2­Phosphoglycerate  to PEP in preparation for ATP synthesis in step 10 •The overall ΔG for this reaction is 1.8 kJ/mol •"Energy content" of 2­PG and PEP are similar (Ch 18, Slide 36) 36. How does excess acetyl CoA affect gluconeogenesis? •Acetyl­CoA is an allosteric activator •When ATP or acetyl­CoA are high, pyruvate enters gluconeogenesis (Ch 22, Slide 12) 37. What is the driving force for the reaction catalyzed by UDP­glucose pyrophosphorylase  that generates UDP­glucose from glucose 1­phosphate? •UDP­glucose pyrophosphorylase catalyzes a phosphoanhydride exchange ­ driven by  pyrophosphate hydrolysis The mechanism of the UDP­glucose pyrophosphorylase reaction: •attack by a phosphate oxygen of glucose­1­P on the α­phosphorus of UTP is followed  by departure of the pyrophosphate anion. 38. What is the effect of insulin on glycogen degradation? Insulin lowers blood [glucose] by stimulating glycogen synthesis and INHIBITING glycogen  degradation/breakdown. Specifically, insulin triggers protein kinase cascades that stimulate  glycogen synthesis in the liver and muscles (Slide 50 and 52, Ch. 22) 39. What is the role of protein kinase A in glycogen degradation? a. When Protein Kinase A is activated by cAMP, it in turn phosphorylates three other enzymes: i. Glycogen Phosphorylase Kinase  1. Glycogen phosphorylase kinase functions to phosphorylate Glycogen  Phosphorylase, an enzyme that converts Glycogen to Glucose­1­Phosphate monomers  ii. Glycogen Synthase  1. The phosphorylation of Glycogen Synthase inhibits its activity, preventing  production of glycogen as it is being degraded  iii. Inhibitor Protein of Phosphoprotein Phosphatase  1. When Inhibitor Protein of Phosphoprotein Phosphatase is phosphorylated, it  binds to Phosphoprotein Phosphatase, obviously inhibiting it.  2. The functions of Phosphoprotein Phosphatase is essentially the opposite of  protein kinase A in this metabolic pathway 40. What is the effect of epinephrine on glucose metabolism? Epinephrine inhibits glycogen synthesis and stimulates glycogen breakdown (the opposite effect of insulin). This hormone, along with glucagon, triggers a phosphorylase cascade that amplifies  the signal to stimulate glycogen breakdown by activating adenylyl cyclase.  41. During fasting, which amino acid is utilized in gluconeogenesis to restore blood glucose  levels? All amino acids, except of Lysine and Leucine, can be used as substrates for gluconeogenesis.  Lysine and Leucine produce acetyl­CoA upon degradation, and we already established acetyl­ CoA is not a substrate in gluconeogenesis, only an allosteric activator. (Substrates are  converted to glucose). 42. What are the enzymes unique to gluconeogenesis compared to glycolysis? Pyruvate carboxylase and PEP carboxykinase replace pyruvate kinase. Fructose­1,6­ biphosphatase replaces phophofructokinase. Glucose­6­phophatase replaces hexokinase.  (Slide 9, Ch. 22) 43. What is the importance of enol­keto tautomerization of pyruvate? Keto­enol equilibrium of pyruvate is the key for the pyruvate kinase reaction. The conversion rxn may be viewed as phosphoryl transfer followed by an enol­keto tautomerization. The  tautomerization is spontaneous and accounts for much of the free energy change for PEP  hydrolysis. (Ch 18, Slide 38) 44. Can acetyl­CoA be utilized directly in gluconeogenesis? No, •Pyruvate, lactate, glycerol, amino acids and all TCA intermediates can be utilized •Fatty acids cannot be used because most fatty acids yield only acetyl­CoA and acetyl­CoA  (through TCA cycle) cannot directly provide net synthesis of sugars. (Ch 22, Slide 8) 45. Which intermediate substance is a product of glycolysis, a precursor of  gluconeogenesis, and a precursor of the citric acid cycle? Pyruvate 46. How is oxaloacetate transported out of mitochondria during gluconeogenesis? In order for OAA to be transported out of the mitochondria, it must first be reduced to  malate. After its conversion, it is transported out and oxidized back to OAA. Slide 13, Ch. 22  explains it well.


Buy Material

Are you sure you want to buy this material for

50 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Bentley McCaw University of Florida

"I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"

Kyle Maynard Purdue

"When you're taking detailed notes and trying to help everyone else out in the class, it really helps you learn and understand the I made $280 on my first study guide!"

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Parker Thompson 500 Startups

"It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.