Log in to StudySoup
Get Full Access to USC - BIO 102 - Study Guide - Midterm
Join StudySoup for FREE
Get Full Access to USC - BIO 102 - Study Guide - Midterm

Already have an account? Login here
Reset your password

USC / Biology / BIOL 102 / How did fossils help darwin further his work and his ideas?

How did fossils help darwin further his work and his ideas?

How did fossils help darwin further his work and his ideas?


School: University of South Carolina
Department: Biology
Course: Biological Principles II
Professor: Mihaly czako
Term: Fall 2016
Tags: Biology
Cost: 50
Name: BIOL 102 Exam 1 Comprehensive Study Guide (9/08/16 Exam)
Description: This study guide includes everything from lecture and information from the book that the upcoming exam will consist of.
Uploaded: 09/05/2016
9 Pages 46 Views 3 Unlocks

Biology 102 Exam 1 Study Guide 

How did fossils help darwin further his work and his ideas?

Darwin: 1859  Origin of Species

∙ focused on great diversity of organisms

∙ noted that current species = descendants of ancestral species

∙ Evolution (Darwin definition) = descent with modification  

o as opposed to Aristotle  who thought species = fixed and arranged on linear model, w/  increasing complexity

∙ Linnaeus  adaptations

o taxonomy, binomial nomenclature  CLASSIFICATION FORMAT 

∙ Fossils laid groundwork for Darwin and his ideas

o Cuvier, Hutton, Lyell influenced Darwin

∙ Lamarck  species evolve thru use and disuse of body parts, inheritance of acquired traits ∙ SS Beagle  Darwin’s ship around globe

What is darwin's three major observations according to his essay on natural selection?

We also discuss several other topics like What did rutherford use to prove the structure of the atom?

o Found Earth much older than previous 6,000 yr. old estimate

o Biological diversity on Galapagos + adaptation and it’s connection to the origin of new  species

o 1844 Darwin write essay on natural selection

  o   3 Broad Observations: 

 unity of life

 diversity of life Don't forget about the age old question of Which anatomy refers to the structural changes caused by a disease?

 match b/w organisms and their environment Don't forget about the age old question of What does cartesian dualism propose?

∙   Evolution must have

1.   varied, inherited traits

2.   produce more offspring than environment can support 

In what way is homology an evidence of evolution?

∙   Natural Selection:

o individuals w/ certain heritable traits reproduce and survive @ higher rate than others o increases match b/w organisms and their environment

o change in environment = natural selection and adaptations, can give rise to new species **INDIVIDUALS DO NOT EVOLVE 


  ∙       Evidence of Evolution: 

1.   Direct Observation:

 ex) natural selection in response to introduction of new plant species If you want to learn more check out What does astrobiology study?
We also discuss several other topics like How many tribes consist the early native americans?

 ex) evolution of drug resistant bacteria

2.   Homology:

 similarity b/w organisms & species as a result of common ancestors Don't forget about the age old question of What is the first product or respiration?

∙   can be anatomical and molecular

∙   evolutionary trees

o hypotheses that summarize current understandings of patterns of 


∙   structure common in ancestors (homologous structures)

 Convergent Evolution:

∙   evolution of similar, or analogous features in distantly related groups

∙   arise when groups adapt independent to similar environments, but in 

similar ways

∙   gives NO info about ancestry

3.   Biogeography:

 study of distribution of species

∙   evidence for evolution

      Endemic  species not found anywhere else in the world

4.   The fossil record:

 documents pattern of evolution by showing changes b/w present day organisms  and extinct or past ones

 found in strata

 each strata layer = catastrophic event 

 Fossil record shows macroevolutionary changes over large time scales  Fossil record is biased in favor of species that:

∙ Existed for long time

∙ We abundant and widespread

∙ Had hard parts

 Absolute ages of fossils determined by radiometric dating

 Radioactive “parent isotope decays to “daughter” isotope at constant rate ∙ Each isotope known as half life  time required for ½ parent isotope to  decay

∙   Adaptation:

o characteristics of organisms (inherited) that enhance their fitness (survival) and  reproduction w/in environment

 ex) Finches in Galapagos

∙   different adaptations based off different food sources on specific islands ∙   Artificial selection:

o selection and breeding of individuals who posses desired traits

 ex) HUMANS!

  ∙       Darwin’s Observations & Interferences: 

o Observations:

∙   varied inherited traits w/in populations

∙   species produce more offspring than environment can support

∙   w/ many failing to survive and reproduce

o Interferences:

∙   individuals w/ traits w/ high probability of surviving and reproducing w/in  specific environment leave more offspring

∙   inequalities w/ individuals being able to survive and reproduce leave to  accumulating of good traits in populations over generations

∙   Microevolution:

o change in allele frequencies in population over generations 

o 3 Mechanisms: 

  ∙       Genetic Drift:

∙ small sample = greater chance of random deviation from predicted result ∙ allele frequencies fluctuate from one generation to the next

∙ reduces genetic variation because alleles are lost

o Founder Effect: 

 few individuals become isolated from larger population

∙ allele frequencies can be different from ours in 

larger population

  o   Bottleneck Effect: 

 sudden reduction in population size due to changes in 


 new gene pool could no longer be same as larger 


 if population remains small, genetic drift can affect it more

 humans can create bottleneck effect for other species

  ∙       Gene Flow: 

∙   movement of alleles among populations 

o transferred thru individuals or gametes

∙   reduces genetic variation over time 

∙   increase and decrease fitness of populations

∙   Genetic Variation:

o differences in genes or other DNA segments

o Phenotype  product of inherited genotype and environment

∙   some differences determined by a single­gene, others by influence of 2 or more  genes

o measured by gene variability or nucleotide variability 

o average heterozygosity: average percent of loci that are heterozygous

o nucleotide variability measured by comparing DNA sequences of individuals   o   LOTS OF GENETIC VARIATION @ DNA LEVEL** 

o mutation of duplication

o sexual reproduction – recombining existing alleles

∙   Forming new alleles:

∙   mutation = random change in DNA nucleotide sequence

∙   only mutations in gametes can be passed on to offspring

∙   point of mutation = change in one base in a gene

  ∙       Effects of mutation: 

∙   harmful for protein production

o sometimes beneficial

∙   neutral variation = no advantage of disadvantage

∙   Altering Genes: 

o delete, disrupt, rearrange loci  harmful

o duplication of small pieces increase genome size

∙   duplicated genes take on new functions by further mutation

o mutation rates low in plants and animals 

∙   1 in every 100,000

o lower in prokaryotes, higher in viruses

  ∙       Hardy­Weinberg Equation: 

o Population: localized group of individuals that can interbreed and produce offspring o Gene pool: all alleles for all loci in a population

o Fixed locus: all individuals in population must be homozygous for same allele o 2 alleles @ each locus, p & q represent frequencies of dominant and recessive alleles for  populations

  ∙       ALL alleles in population add up to 1 (there can be more than 2 alleles!) ∙   ex) p + q = 1 

o equation describes genetic makeup of population that is NOT evolving

∙   IF observed genetic makeup differs from Hardy­Weinberg…population is  evolving

∙   Populations that meet the following expectations are in Hardy­Weinberg  equilibrium:

1.   NO mutations

2.   Random mating

3.   NO natural 


4.   LARG

population size

5.   NO gene flow

  o   Genotypes: 

o p2 = frequency of population with homozygous (often dominant) genotype o 2pq = frequency of population with heterozygous genotype

o q2 = frequency of population with homozygous (often recessive) genotype o p2 + 2pq +q2 = 1 

  ∙       3 different types of natural selection: 

    1.       Directional selection:  

∙   favors individuals at one end (extreme) of phenotypic range

    2.       Disruptive selection: 

∙   favors individuals @ both ends (extremes) of phenotypic range

    3.    Stabilizing Selection: 

∙ favors intermediate variants and acts against extreme phenotypes

  ∙       Sexual Selection: natural selection for mating success

 Sexual Dimorphism: marked differences b/w sexes in secondary sexual traits o Types:

      Intrasexual Selection: direct competition among individuals of one sex  (mainly males)  for mates of the opposite sex

      Intersexual Selection: “mate choice” individuals of one sex (mainly females) are choosy in selecting their mates

  ∙       Balancing Selection: natural selection maintains stable frequencies of 2 or more phenotypic  forms w/in a population

  ∙       Including… 

o Heterozygote advantage: when heterozygotes have higher fitness than both  homozygotes

 can result from stabilizing or directional selection

o Frequency­dependent selection: fitness of phenotype declines if it becomes too  common in population

 whichever phenotype is less common in population

  ∙       History of Life On Earth: 

o Chemical and physical processes in early Earth may have produced simple cells  through sequence of stages:

1. Abiotic synthesis of small organic molecules

2. Joining of these molecules into macromolecules

3. Packaging of molecules into protocells

4. Origin of self­replicating molecules

  ∙       Protocells: 

o Replication and metabolism are key properties of life and may have appeared in  protocells

o Protocells may have formed from fluid­filled vesicles in membrane­like structure o Vesicles exhibit simple reproduction and metabolism & maintain internal chemical  environment different from external

∙ First genetic material probably RNA, not DNA

∙ Absolute ages of fossils determined by radiometric dating

∙ Radioactive “parent isotope decays to “daughter” isotope at constant rate o Each isotope known as half life  time required for ½ parent isotope to decay ∙ Macroevolution: broad patterns of evolutionary change above species level, by same  mechanisms that cause microevolution (see Microevolution definition)

∙ Biological Species Concept: species = group of population whose members can interbreed in  nature and produce viable, fertile, offspring; DON’T breed successfully with members of other  populations

o Gene flow b/w populations of same species holds a species together genetically       Limitations: 

∙ Can’t be applied to fossils or asexual organisms

∙ Emphasizes absence of gene flow

∙ BUT gene flow can occur b/w distinct species when some barrier is 

broken naturally or artificially

∙ Reproductive Isolation: existence of biological factors (barriers) impeding two species from  producing viable, fertile offspring

∙ Hybrids: offspring of crosses b/w different species

o Pre or post fertilization

∙ Prezygotic barriers: block fertilization from occurring by…

o Impeding different species attempting to mate

o Preventing successful completion of mating

o Hindering fertilization if mating successful

∙ Postzygotic barriers: prevent hybrid zygote from developing into viable, fertile adult o Reduced hybrid viability

o Reduced hybrid fertility

o Hybrid breakdown

∙ Morphological Species Concept: defines species by structural features

o Applies sexual and asexual species but relies on subjective criteria

∙ Ecological Species Concept: views a species in terms of its ecological niche o Applies sexual and asexual species and emphasizes role of disruptive selection ∙ Phylogenetic Species Concept: defines species as smallest group of individuals on phylogenetic tree

o Applies to sexual and asexual species but can be difficult to determine degree of  difference required for separate species

∙     Allopatric (“Other Country”) Speciation: gene flow interrupted or reduced when population  divided into geographically isolated subpopulations

 ex) flightless cormorant of Galapagos originated from flying species on mainland o Definition of barrier depends on ability of population to disperse

 ex) canyon can create barrier for small rodents, NOT birds, coyotes, or pollen o Separate populations can evolve independently thru mutation, natural selection, genetic  drift

o Reproductive isolation can arise as by­product of genetic divergence

 Increases as distance b/w species increases

o Regions with lots of geographic barriers have typically have more species than do regions w/ fewer barriers

 Physical separation alone isn’t biological barrier, reproductive barrier are intrinsic to organisms themselves

∙     Sympatric (“Same Country”) Speciation: speciation takes place in geographically overlapping populations

o Reproductive barrier isolates subset of population w/out geographic separation from  parent species

o Can occur if gene flow is reduced by following factors:

 Polyploidy: presence of extra sets of chromosomes due to accidents during cell  division

∙ Much more common on plants than animals

∙ Can produce new biological species in sympatry w/in single generation

o Autopolyploid: individual with more than 2 sets of chromosome 

sets (derived from single species)

o Allopolyploid: species with multiple sets of chromosomes derived 

from different species

 Sexual Selection: can drive sympatric speciation

 Habitat differentiation: appearance of new ecological niches

∙ ex) North American maggot fly can live on native hawthorn trees & more  recently introduced apple trees

Page Expired
It looks like your free minutes have expired! Lucky for you we have all the content you need, just sign up here