Limited time offer 20% OFF StudySoup Subscription details

UH - GEOL 1302 - Class Notes - GEOL 1302, Week 4 Notes

Created by: Theresa Nguyen Elite Notetaker

> > > > UH - GEOL 1302 - Class Notes - GEOL 1302, Week 4 Notes

UH - GEOL 1302 - Class Notes - GEOL 1302, Week 4 Notes

School: University of Houston
Department: Geology
Course: Intro to Global Climate Change
Professor: Yunsoo Choi
Term: Fall 2016
Tags:
Name: GEOL 1302, Week 4 Notes
Description: In this chapter, we created a very simple climate model based on the fact that the solar energy received by a planet (Ein) must be balanced by the energy that is radiating to space (Eout). For a planet
Uploaded: 09/19/2016
This preview shows pages 1 - 2 of a 4 page document. to view the rest of the content
background image Chapter 4: A “simple” climate model Power of the Sun P = sT^4a = sT^4(4pr^2) σ = 5.670373 * 10−8 (W/m2)/K4  T = 5778 K  Radius of the Sun (r) = 6.9634 * 108 m 3.8510 * 1026 W ≈ 3.8 trillion trillion Watts  Earth’s solar constant (S) Earth-Sun Distance =150,000,000 km = 150*109 m Surface area of a sphere = 4*pi*r2 SA = 4*pi*(150*109 m)2 =2.83 * 1023 m2 Earth’s Solar Constant (S) = Power of Sun / Surface area sphere = = 
3.8*1026 W / 2.8*1023 m^2 = 1,360 W/m^2
Solar constant on Venus (Sv) Venus-Sun Distance = 108,000,000 km = 108*109 m Surface area of a sphere = 4*pi*r^2 SA = 4*pi*(108*109 m)^2 = 1.47 * 10^23 m^2  Solar Constant Venus (Sv) = Power of Sun / Surface area sphere = 
3.8*1026 W / 1.47*1023 m^2 
- Sv = 2,600 W/m^2 
- What is S?  1,360 W/m^2
Total power of Solar energy shining on Earth Solar constant = 1,360 W/m^2 What is Sunlight area of Earth? Radius of Earth (R) = 6,400 km = 6.4*10^6 m  Area of the Earth’s shadow ( A Es ) = pi*R2 = 1.3*10^14 m^2  Total power of Solar energy shining on Earth = 
- = Solar constant (S) * Area of Earth’s shadow ( A
Es ) - = (1360 W/m^2) * (1.3*10^14 m^2) = 1.8*10^17 W 
- = 180,000 trillion watts = 180,000 terawatts (TW) 
Each day humans consume ≈ 15 TW.  So if we could capture 0.01% of solar energy shining on Earth, we 
could satisfy all of the world’s current energy needs.
Earth’s Albedo (α) Some of the sunlight that shines on Earth is absorbed and the rest is 
reflected back into Space. 
background image The reflectivity of a planet, or the fraction of reflected photons, is 
called its’ “albedo” or “α”. 
The global average albedo of Earth is approximately 0.3, meaning that 
30% of photons are reflected.  
- What percent of the photons are absorbed?
Fraction of photons absorbed = 1 – α = 0.7 or 70%.  Thus the total rate of energy absorbed by Earth ( E ¿ ) = E ¿  = S(1 – a)pR^2 E ¿ ) = 180,000 TW * 0.7 = 126,000 TW Energy Input ( E ¿ ) aka Power Input E ¿ ) = 180,000 TW * 0.7 = 126,000 TW  More useful to describe  E ¿  in units of Watts per square meter. E ¿ area = S ( 1−a ) p R 2 p R 2 = S ( 1−a ) 4 E ¿ / area = (1,360 W/m^2 * 0.7) / 4 = 238 W/m^2  How much is reflected back into space? 
-
E reflected  = (1,360 W/m^2 * 0.3) / 4 = 102 W/m^2 How much is average total E reaching top of our atmosphere? 
- 238 W/m^2 + 102 W/m^2 = 340 W/m^2
Energy Input ( E ¿ ) varies spatially So the Earth absorbs an average of 238 W/m^2 from the Sun, but that 
does not mean that every square meter absorbs this amount. 
- Where is it absorbing less?  
- Where is it absorbing more?
Energy loss to Space In the early 1800s, Joseph Fourier, on of history’s greatest 
mathematicians asked the following simple question:
- “Because energy is always falling on the Earth from the Sun, why 
doesn’t the Earth heat up until it is the same temperature as the 
Sun?”
The answer he determined is that the Earth is losing energy at the 
same rate as it is receiving it from the Sun.  
- Otherwise it would heat up. 
- Therefore, the global average  E
¿  = 238 W/m^2 =  E out .

This is the end of the preview. Please to view the rest of the content
Join more than 18,000+ college students at University of Houston who use StudySoup to get ahead
4 Pages 19 Views 15 Unlocks
  • Better Grades Guarantee
  • 24/7 Homework help
  • Notes, Study Guides, Flashcards + More!
Join more than 18,000+ college students at University of Houston who use StudySoup to get ahead
School: University of Houston
Department: Geology
Course: Intro to Global Climate Change
Professor: Yunsoo Choi
Term: Fall 2016
Tags:
Name: GEOL 1302, Week 4 Notes
Description: In this chapter, we created a very simple climate model based on the fact that the solar energy received by a planet (Ein) must be balanced by the energy that is radiating to space (Eout). For a planet
Uploaded: 09/19/2016
4 Pages 19 Views 15 Unlocks
  • Better Grades Guarantee
  • 24/7 Homework help
  • Notes, Study Guides, Flashcards + More!
Join StudySoup for FREE
Get Full Access to UH - GEOL 1302 - Class Notes - Week 6
Join with Email
Already have an account? Login here
×
Log in to StudySoup
Get Full Access to UH - GEOL 1302 - Class Notes - Week 6

Forgot password? Reset password here

Reset your password

I don't want to reset my password

Need help? Contact support

Need an Account? Is not associated with an account
Sign up
We're here to help

Having trouble accessing your account? Let us help you, contact support at +1(510) 944-1054 or support@studysoup.com

Got it, thanks!
Password Reset Request Sent An email has been sent to the email address associated to your account. Follow the link in the email to reset your password. If you're having trouble finding our email please check your spam folder
Got it, thanks!
Already have an Account? Is already in use
Log in
Incorrect Password The password used to log in with this account is incorrect
Try Again

Forgot password? Reset it here