New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

BIO 311C Study Guide 1 Notes Compilation

by: Sena Sarikaya

BIO 311C Study Guide 1 Notes Compilation Bio 311C

Marketplace > University of Texas at Austin > Biology > Bio 311C > BIO 311C Study Guide 1 Notes Compilation
Sena Sarikaya

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

This is a bundle of textbook notes based on handouts 1-5. The concept check questions and photo content are courtesy of Campbell Biology Edition 10.
Introductory Biology I
Dr. Buskirk
Study Guide
Biology, Study Guide, intro to bio
50 ?




Popular in Introductory Biology I

Popular in Biology

This 33 page Study Guide was uploaded by Sena Sarikaya on Thursday September 22, 2016. The Study Guide belongs to Bio 311C at University of Texas at Austin taught by Dr. Buskirk in Fall 2016. Since its upload, it has received 9 views. For similar materials see Introductory Biology I in Biology at University of Texas at Austin.


Reviews for BIO 311C Study Guide 1 Notes Compilation


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 09/22/16
Textbook Notes for Handout 1 Ch. 2 2.3 The Formation & Function of Molecules Depend on Chemical Bonding btwn Atoms A. Covalent Bonds ­covalent bond: sharing of a pair of valence e­ by 2 atoms ­ molecule: 2 or more atoms held together by cov. bond ­ex. molecular formula  H 2 ­Lewis Dot structure H:H ­ex. structural formula H­H ­single bond: 1 pair of shared e­, represented w/ “­” ­double bond: 2 pair of shared e­ ­ex. O=O ­valence: bonding capacity; usually # of unpaired e­ ­ex. for oxygen its 2; hydrogen its 1; nitrogen its 3; carbon its 4 ­phosphorus can have 3 or 5 ­ H 2  and  O 2  are pure elements NOT compounds ­compounds are 2 or more dif. elements ­ex.  H O 2 ­electronegativity: attraction of a particular atom for the e­ of a covalent bond ­nonpolar covalent bond: 2 atoms w/ same electronegativity; e­ shared equally ­polar covalent bond: e­ not shared equally; one atom ore electronegative B. Ionic Bonds ­ions: charged atoms ­cations: (+) ­anions: (­) ­ionic bond: 2 ions of opp. charge bond ­ionic compounds or salts: compounds formed by ionic bonds ­ion can also be a charged molecule ­ex. +¿ ¿ NH 4 ­ionic bonds strong when dry but diss. in H 2 ­arrange in 3D lattice ­not molecules; formula for ionic comp. is a ratio C. Weak Chemical Bonds a. Hydrogen Bonds  ­hydrogen bonds: attraction btwn H & electronegative atom b. Van der Waals Interactions ­vdwi: ever changing regions of (+) and (­) charge enabling atoms & mol.  to stick to one & another ­individually weak but occurring simultaneously ­> powerful D. Molecular Shape & Function ­determines how biological molecules organize & respond to one another w/  specificity ­match btwn structure & funct.   Concept Check 2.3 1. Why does H­C=C­H fail chemically? C needs 8 e­ in valence shell so missing 2 e­ per C 2. What holds atoms together in  MgCl 2 ? Ionic bonds 3. Why would you want to learn the 3D shapes of naturally occurring signal  molecules? Clue to receptor shapes; synthesize molecules that mimic the shapes to treat  individuals who can’t produce their own 2.4 Chemical Reactions Make & Break Chemical Bonds ­chemical reaction: making & breaking of chemical bonds leading ot changes ­chemical equilibrium: the point @ which rxns offset on another exactly ­dynamic equil. b/c rxn still going on but no net effect on conc. of react. / prod.  Ch. 3 3.1 Polar Covalent Bonds in Water Molecules Result in Hydrogen Bonding ­polar molecule: unequal sharing of e­  ­ ex.  H O 2 Concept Check 3.1 1. What is electronegativity; how does it affect interactions between water  molecules? Electronegativity= how much an e­ is attracted to the e­ of a covalent bond.  Electronegativity affects interactions in water molecules by causing a polar  molecule that forms hydrogen bonds.  2. Why is this unlikely?        H     H     / \ O O            \             / H      H Because H is partially (­) so H’s will repel and be attracted to the O’s forming  hydrogen bonds between molecules. 3. What would the effect on properties of the water if O and H had equal  electronegativity? Hydrogen bonds could not form if the molecule was non­polar.  3.2 Four Emergent Properties of Water Contribute to Earth’s Suitability for life A. Cohesion of Water Molecules ­cohesion: H bonds holding the subst. together ­transport of water & dissolved nutrients against gravity of plants ­adhesion: clinging of one substance to another ­surface tension: how difficult it is to break the surface of a liquid ­related to cohesion B. Moderation of Temperature by Water a. Temperature & Heat ­kinetic energy: the energy of motion ­thermal energy: K.E. associated w/ random movement of atoms ­temperature: measurement of nrg of avg K.E. of molecules in matter ­doesn’t depend on volume like thermal nrg ­thermal nrg passes from hotter to cooler object ­heat: thermal nrg in transfer from one body of matter to another ­calorie (cal): unit of heat; the amount of heat it takes to raise the temp. of  1g of water 1C ­kilocalorie (kcal) : 1,000 cal; the amount of heat it takes to raise 1 kg of  water 1C ­joule (J) : energy unit; 1 J = 0.239 cal b. Water’s High Specific Heat ­specific heat: amount of heat absorbed or lost for 1g of substance to  change temp. by  1C ­water’s specific heat is 1cal/g * C ­high compared to other sub. ­ex. ethyl alcohol = 0.6 cal/g * C ­resist in changing temp. when absorbing or losing heat ­b/c of hydrogen bonding ­benefits: ­ @ winter cooling water will warm air ­ @ coastal areas it moderates temp. ­ large body of water can absorb lots of heat w/o warming up a lot ­stabilize ocean temp. ­organisms are made up of a lot of water so better able to resist  own temp. change c. Evaporative Cooling ­liquid to gas = vaporization/ evaporation ­heat of vaporization: how much heat liquid needs to absorb for 1g of it to  go from liq. to gas ­water has high heat of vaporization ­b/c of hydrogen bonds ­effects of high heat of vap. of water… ­ moderate Earth’s climate ­steam burns ­evaporative cooling: the surface of liquid that remains, as liquid  evaporates, cools down ­hottest molecules w/ high K.E. leave as gas so cooler mol. left ­effect of evap. cooling…  ­stabile lake & pond water ­keeps organisms from overheating B.  Floating of Ice on Liquid Water ­water is less dense as solid than liquid ­hydrogen bonding C.  Water: The Solvent of Life ­solution: liquid that is homogenous mix of 2 or more substances ­solvent: the dissolving agent ­solute: substance that is dissolved ­aqueous solution: solute is diss. in water; water = solvent ­water is good solvent b/c hydrogen bonding ­hydration shell: sphere of water mol. around each dissolved ion a. Hydrophilic & Hydrophobic Substances ­hydrophilic: substance w/ affinity for water ­doesn’t always dissolve ­ex. cellulose ­hydrophobic: substance that seems to repel water; non­polar; can’t H  bond b. Solute Concentration in Aqueous Solutions ­molecular mass: sum of masses of all atoms in a mol ­ex.  C 12O 22 11  (sucrose)  ­mol. mass = (12*12)+(22*1)+(11*16)=342 ­mole (mol): 6.02 x 10^23 or Avogadro’s number ­molarity: # of moles of solute per liter of solution D. Possible Evolution of Life on Other Planets ­seasonal streams on mars? ­b/c of  H O rather than water 2 ­drilling into Mars could be next step ­if life­forms are found… evolution gains new perspective Concept Check 3.2 1. Describe how properties of water affect upward movement of water in trees. Cohesion of water molecules cause water to stick to itself and adhesion of  water causes water to slowly crawl up the interior side of the tree 2. Explain “It’s not the heat; it’s the humidity.” Humidity has water and water can absorb heat 3. How can freezing water crack boulders? Solid water is denser b/c hydrogen bonds cause water molecules to spread out  4. What is the benefit of water striders’ hydrophobic substance coated legs?  What if the substance was hydrophilic? The substance allows the insect to walk on surface w/ water molecules b/c the  non­polar substance repels water; the insect would not be able to walk b/c the  substance would interact w/ water and pull the legs and the insect in water 5. Concentration of ghrelin is 1.3 x 10^­10M. How many molecules of ghrelin  are in 1 L of blood? 1.3 x 10^­10  3.3 Acidic & Basic Conditions Affect Living Organisms ­hydrogen ion (H+): single proton w/ +1 charge ­hydroxide ion (OH­): water molecule w/ lost proton; has charge of ­1 H O ­hydronium ion ( 3 +): water molecule w/ proton bound A. Acids & Bases ­acid: substance that increase H ion conc. of a sol. ­ex. HCl ­base: substance that reduces H ion conc. of sol. ­ex. NaOH B. The pH Scale ­pH: negative log (base 10) of H ion conc. ­pH = ­log[H+] C. Buffers ­buffers: substance that minimizes/ resists changes in H+ and OH­ concent. in sol. D. Acidification: A Threat to Water Quality ­ocean acidification: when carbon dioxide dissolves in seawater & reacts w/ water to make carbonic acid; pH is lowered in ocean Textbook Notes for Handout 2 Ch. 4 4.1 Organic Chemistry is the Study of Carbon Compounds ­organic chemistry: study of compounds w/ carbon A. Organic Molecules & the Origin of Life on Earth ­Stanley Miller brought abiotic synthesis of organic compounds into evol. context ­complex organic molecules could arise spontaneously under early earth  conditions 4.2 Carbon Atoms Can Form Diverse Molecules by Bonding to Four Other Atoms A. The Formation of Bonds with Carbon ­electron configuration gives covalent capability w/ many dif. elements B. Molecular Diversity Arising from Variation in Carbon Skeleton a. Hydrocarbons ­hydrocarbons: organic mol. w/ only carbon & hydrogen ­non­polar; won’t dissolve in water ­fats b. Isomers ­isomers: compounds w/ same # of atoms of same elements but diff.  structures & diff. properties ­structural isomers: differ in covalent arrangement of atoms ­single or double bond placement ­cis­trans isomers: geometric; differ in spatial arrangement b/c of  inflexibility of double bonds ­single bonds allow free rotation; double doesn’t ­enantiomers: isomers that are mirror images of each other b/c of  asymmetric carbon Concept Check 4.2 1. Can propane ( C H ) form isomers?  3 8 No, because there is only way to form the molecule. There are no double  bonds and the hydrogen­carbon bonds make the molecule symmetrical.  4.3 A Few Chemical Groups Are Key to Molecular Function ­properties of organic molecules depend on carbon skeleton & attached chem. groups A. The Chemical Groups Most Important in the Processes of Life ­functional groups: chemical groups directly involved in chemical reactions ­hydroxyl, carbonyl, carboxyl, amino, sulfhydryl, phosphate, methyl B. ATP: An Important Source of Energy for Cellular Processes ­adenosine triphosphate (ATP): adenosine attached to three phosphate groups ­when ATP reacts w/ water inorganic phosphate, ADP, and nrg are the products Ch.5 5.1 Macromolecules Are Polymers, Built from Monomers ­macromolecules: carbohydrates, proteins, nucleic acids ­polymer: long molecule w/ similar/identical building blocks lined w/ covalent bonds ­monomers: building blocks of polymers A. The Synthesis & Breakdown of Polymers ­enzymes: specialized macromolecules that speed up chemical rxns ­dehydration reaction: monomers are connected covalently w/ the loss of a water  molecule ­hydrolysis: polymers disassembled to monomers; reverse of dehydration rxn ­breakage w/ water ­hydrogen from water attach to one monomer ­hydroxyl group attach to adjacent monomer ­ex. digestion B. The Diversity of Polymers ­40 to 50 common monomers ­small molecules ­> unique macromolecules Concept Check 5.1 1. What are the four main classes of molecules? Which class does not have  polymers? Carbohydrates, Lipids, Proteins, Nucleic Acids. Lipids 2. How many molecules of water are needed to hydrolyze a polymer of ten  monomers? 9 3. If you eat fish, what must occur for the amino acid monomers to be converted  to new proteins? Released by hydrolysis and condensation reaction to synthesize new  polypeptide chains 5.2 Carbohydrates serve as fuel & Building Material  ­carbohydrates: sugars & polymers of sugars ­monosaccharides ­disaccharides= 2 monosacc. w/ covalent bond ­polysaccharides = joined w/ dehydration rxns A. Sugars ­monosaccharide: multiple of unit of  C H 2 ­glucose  C 6 O12 6 ­carbonyl group & mult. hydroxyl group ­disaccharide: 2 monom. w/ glycosidic link ­glycosidic linkage: covalent bond formed btwn 2 monos. by dehydration rxn ­succrose ­lactose ­maltose B. Polysaccharides ­polysaccharides: 100­1000s of monosaccharides w/ glycosidic linkage  a. Storage Polysaccharides  ­starch: polymer of glucose monomers granules w/in plastids (cellular  structures; includes chloroplasts); for plants ­alpha glucose ­glycogen: polymer of glucose like amylopectin but more branched; for  animals ­alpha glucose ­depleted w/in a day unless replenished b. Structural Polysaccharides ­cellulose: major component of cell walls ­beta glucose ­never branched ­in plants, grouped together into microfibirils ­ “insoluble fibers” ­chitin: carbohydrate used by arthropods to build exoskeletons Concept Check 5.2 1. Write the formula for a monosaccharide that has 3 carbons. C H 3 8 2. Two glucose molecules synthesize to make maltose. Glucose is  C6H O12 6 .  What is maltose? C 3 O22 11 5.3 Lipids Are a Diverse Group of Hydrophobic Molecules ­lipids: no true polymers; not big enough to be macromol.; mix poorly w/ water if at all A. Fats ­fat: glycerol & fatty acids ­fatty acid: long carbon skeleton (16 or 18 carbons) w/ carboxyl group @ one end ­triacylglycerol: 3 fatty acids linked to one glycerol molecule ­saturated fatty acid: w/ hydrogen  ­unsaturated fatty acid: one or more double bonds w/ fewer H atoms on each  double bounded carbon -trans fat: hydrogenated unsaturated fat into saturated fats and unsaturated fats with trans double bonds B. Phospholipids -phospholipid: two fatty acids attached to glycerol (not three like fats); third hydroxyl group is joined to phosphate group which has a (-) charge -usually another small charged mol. is linked -ex. Choline -hydrocarbon tails = hydrophobic -phosphate group & attachment = hydrophilic -assemble into bilayers C. Steroids -steroids: lipids w/ carbon skeleton consisting of four fused rings -Cholesterol: a type of steroid; in animal cell membrane; precursor for other steroids -ex. sex hormones Concept Check 5.3 1. Compare the structure of a fat with a phospholipid. Fat= a glycerol with three fatty acids (hydrocarbon chain); non­polar;  hydrophobic Phospholipid= glycerol attached to fatty acids; polar head, non­polar tail;  hydrophobic and hydrophilic; phosphate group 2. Why are human sex hormones lipids? Hormones are steroids which are hydrophobic lipids Textbook Notes from Handout 3 Ch. 5 5.4 Proteins Include A Diversity of Structures, Resulting in A Wide Range of Functions ­catalysts: chem. agents that speed chem. rxn w/o being consumed by rxn  ­polypeptides: polymers of amino acids ­protein: biologically funx. mol. that consists of one or more polypeptides A. Amino Acid Monomers ­amino acid: organic molecule w/ both amino groups & carboxyl group (& R  group) B. Polypeptides ­peptide bond: 2 amino acids positioned so that carboxyl group of one is adjacent  to amino group of another w/ dehydration rxn  ­polypeptide of any length always has N terminus & C terminus C. Protein Structure & Function ­polypeptide NOT synonymous to protein ­ex. long yarn NOT synonymous to sweater ­many proteins are spherical (globular proteins) ­other proteins are long fibers (fibrous proteins)  a. Four Levels of Protein Structure ­primary structure: sequence of amino acids ­secondary structure: the coils and folds as result of H bond btwn  polypeptide backbone (NOT amino acid side chains) th ­alpha helix: coil w/ H bond btwn every 4  amino acid ­beta pleated sheet: two or more polypeptide chain lying side by  side connected by H bonds btwn two parallel segments of  polypeptide backbone ­tertiary structure: overall shape of polypeptide from side chains (R  groups) ­hydrophobic interactions: as polypeptide folds to funx. shape,  amino acids w/ hydrophobic side chains w/ clusters @ core of  protein ­no contact with water ­disulfide bridge: covalent bond enforcing shape of protein b/c of  cysteine monomers w/ sulfhydryl groups are brought together ­quaternary structure: overall protein structure from aggregation of  polypeptide subunits b. Sickle­Cell Disease: A Change in Primary Structure ­sickle cell disease: inherited blood disease b/c substitution of one amino  acid (valine) for normal (glutamic acid) at the primary structure of  hemoglobin ­hemoglobin carries oxygen in red blood cells  ­simple change in structure has devastating effect on funx c. What Determines Protein Structure? ­arrangement of polypeptide chain ­physical & chemical conditions of protein’s environment ­pH, salt, temp., etc.  ­denaturation: protein unravels & loses native shape; protein becomes  biologically inactive d. Protein Folding in the Cell ­chaperonins: protein mol. that assist in proper folding of other proteins ­do not specify final structure of polypeptide ­keeps new polypeptide separate from disruptive chemical cond. in cytoplasm while it folds spontaneously ­X­ray crystallography: diffraction of X­ray beams by atoms of  crystallized mol.  ­build 3D model of every possible atom in protein ­first worked out for myoglobin Concept Check 5.4 1. What parts of a polypeptide participates in bonds that hold secondary  structure? Tertiary structure? Secondary = hydrogen bonds Tertiary = interaction of side chain 3. Where would you expect a polypeptide region rich in amino acids valine,  leucine, and isoleucine to be located in a folded polypeptide? Explain. Nonpolar and hydrophobic so it is protected from the polar inside of the cell.  5.5 Nucleic Acids Store, Transmit, and Help Express Hereditary Information ­gene: amino acid sequence of a polypep. programed by discrete unit of inheritance ­nucleic acids: polymers of monomers called nucleotides A. Roles of Nucleic Acids ­deoxyribonucleic acid (DNA): nucleic acid genetic material; directs RNA  synthesis; directions for own replication ­ribonucleic acid (RNA): nucleic acid; controls protein synthesis ­gene expression: DNA and RNA processes B. The Components of Nucleic Acids ­polynucleotides: nucleic acid macromolecules that exist as polymers ­nucleotide: five­carbon sugar (a pentose), a nitrogen­containing base  (nitrogenous base), one or more phosphate groups ­pyrimidine: 6­membered ring of carbon and nitrogen atoms ­cytosine (C), thymine (T), uracil (U) ­purine: six­membered ring fuses to a five­membered ring ­adenine (A), guanine (G) C. Nucleotide Polymers ­nucleotide into polynucleotide requires dehydration rxn ­sugar­phosphate backbone ­nitrogenous base NOT part of backbone ­5’ to 3’ carbon D. The Structures of DNA & RNA Molecules ­double helix: two polynucleotides that wind around an imaginary axis ­backbones run opposite 5’ to 3’ from each other ­antiparallel: opposite 5’ to 3’ direction arrangement ­double helix strands are complimentary ­A always pairs with T ­T always pairs with C ­RNA molecules are single strands ­complimentary base pairing can occur btwn two RNA mol. or btwn two  stretches of nucleotides in same RNA molec. ­b/c T not present in RNA… ­A pairs with U ­more versatile ­> genetics of earlier life 5.6 Genomics & Proteomics Have Transformed Biological Inquiry and Applications ­bioinformatics: use of comp. software to handle & analyze large data sets (genomes) ­genomics: solving problems by analyzing large sets of genes or whole genomes of diff.  species ­proteomics: analysis of large sets of proteins & their sequences ­determined by using biochem techniques or translating DNA that code for them A. DNA & Proteins as Tape Measures of Evolution ­molecular genealogy ­closely related on anatomical & fossil evidence ­> share proportion of DNA  ­human genome 95­98% identical to chimp Textbook Notes from Handout 4 Ch. 25 25.1 Conditions on Early Life made the Origin of Life Possible  ­how did living cells appear? ­observations & experiments propose one scenario  ­chem. & physical processes could have produced simple cells through 4 stages 1. abiotic synthesis of organ. molecules 2. synthesis of small organ. mol. to macromolecules 3. packaging of molecules in protocells ­protocells: droplets w/ membranes & internal chem. diff. from  surrounding 4. origin of self­replication molecules ­> inheritance A. Synthesis of Organic Compounds on Early Earth ­no water but lots of water vapor ­hot ­little oxygen ­compounds released by volcanic eruptions ­as earth cooled ­> water vapor condensed to bodies of water & H into space ­A.I. Oparin & J.B.S. Haladane ­independently hypothesized early earth atmosphere = reducing environ ­organ compounds form from simpler mol. ­lightning & UV radiation = nrg for synthesis ­Stanley Miller & Harold Urey ­lab conditions like early earth ­yielded amino acids & organ. comp. ­another hypothesis that organ. comp. produced in deep­sea hydrothermal vents ­hydrothermal vents: areas on sea­floor w/ heated water & minerals that  come from earth’s interior into the ocean ­some “black smokers” release hot water that make comp. unstable ­alkaline vents: release high pH warm water (more suitable for  origin of life)  ­pH 9­11 ­temp. 40­90C ­another source for organic mol. = meteorites ­ex. Murchison meteorite contains amino acids ­not from earth b/c contains D & L isomers ­organism only make & use L isomers B. Abiotic Synthesis of Macromolecules ­abiotic synthesis of RNA can occur spont. from precursor mol.  ­amino acid or RNA drips on hot sand, clay, rock produces polymers ­spontaneous ­no enzymes or ribosomes  C. Protocells ­all organisms must reproduce & process nrg (metabolism) ­necessary conditions may be met in vesicles ­ex. vesicles form spontaneously w/ lipids in water ­adding montmorillonite (soft mineral from volcanic ash) incr. rate of  vesicle self­assembly ­surface for organ. mol. conc. ­inc. likelihood of mol. rxns & forming vesicles ­abiotically produces vesicles can “reproduce” on their own & grow/ inc. size w/o diluting contents ­vesicles can absorb montmorillonite particles  ­RNA & organ. mol. attached ­some vesicles have selectively permeable bilayer & do metabolic rxns w/  external reagents D. Self­Replicating DNA ­first RNA not DNA ­ribozymes: RNA catalysts ­make short RNA complementary copies w/ supplied nucleotides ­RNA mol. w/ certain nuc. seq. replicates faster & w/ fewer errors than other seq.  ­RNA = template for DNA ­DNA more chem. stable for genetic info & replicated more accurately 25.3 Key Events in Life’s History Include the Origins of Unicellular & Multicellular Organisms  & The Colonization of Land ­geologic record: standard time scale diving earth’s history into 4 eons ­1  eon = Hadean ­2  eon = Archaean ­3  eon = Proterozoic th ­4  eon = Phanerozoic ­Paleozoic ­Mesozoic ­Cenozoic A. The First Single­Celled Organisms ­stromatolites: layered rocks that form when certain prokaryotes bind sediments ­earlies direct evidence of life (3.5 billion y.a.) ­currently found in few shallow marine bays a. Photosynthesis and the Oxygen Revolution ­most atmospheric oxygen = water splitting from photosynthesis ­at first w/ photosynthesis the free oxygen dissolved in surrounding water ­@ high enough conc.  it would react w/ elements dissolved in  water  ­ex. iron ­> iron oxide ­> sediments ­once all dissolved iron precipitates, more oxygen dissolves ­oceans etc. saturated w/ oxygen now ­then oxygen “gasses out” from water to atmosphere ­cyanobacteria = oxygen­releasing photosynthetic bact  ­originates 2.7 billion y.a. ­ oxygen had huge impact on life ­attacks chem. bonds ­inhibits enzymes ­damages cells ­doomed prokaryotes ­some survived in anaerobic conditions ­some adapt w/ cellular resp. b. The First Eukaryotes ­endosymbiont theory: mitochondria & plastids (things like chloroplasts)  were small prokaryotes that started living w/ larger cells ­developed mutually beneficial relationship ­serial endosymbiosis: mitochondria evolved before plastids b/c of  endosymbiotic events ­all eukaryotes of mitochondria like remains  ­not all have plastids ­evidence for endosymbiotic origin of mitochondria & chloroplast… ­inner membranes have transport systems like prokaryotes ­replicate by splitting process like prokaryotes ­circular DNA like bacteria; no large histones ­cellular machinery like ribosomes ­ribosomes more like prokaryotes than eukaryotes B. Origin of Multicellularity a. Early Multicellular Eukaryotes ­oldest fossils of mut. euk. from 1.2 billion y.a. ­from microbial world to evolutionary change b. The Cambrian Explosion ­Cambrian explosion: present day animal phyla suddenly appearing C. Colonization of Land ­milestone in history of life End of Chapter 25 Qs 1. Fossilized stromatolites A. formed around deep­sea vents B. resemble structures formed by bacterial communities that are found  today in some shallow marine bays C. provide evidence that plants moved onto land in the company of fungi  around 500 million years D. contain the first undisputed fossils of eukaryotes and date from 1.8  billion years ago 2. The oxygen revolution changed Earth’s environment dramatically. Which of  the following took advantage of the presence of free oxygen in the oceans and  atmosphere? A. the evolution of cellular respiration, which used oxygen to help harvest energy from organic molecules B. the persistence of some animal groups in anaerobic habitats C. the evolution of photosynthetic pigments that protected early algae  from the corrosive effects of oxygen D. the evolution of chloroplasts after early protists incorporated  photosynthetic cyanobacteria 1. Which of the following steps has not yet been accomplished by scientists  studying the origin of life? A. Synthesis of small RNA polymers by ribozymes B. Formation of molecular aggregates with selectively permeable  membranes C. Formation of protocells that use DNA to direct the polymerization of  amino acids D. Abiotic synthesis of organic molecules Textbook Notes Based on Handout 5 Ch. 6 6.1 Biologists Use Microscopes and the Tools of Biochemistry to Study Cells A. Microscopy ­light microscope (LM): visible light passes through specimen then through glass  lenses ­first used by Renaissance scientists & used in labs ­lenses refract light so that image of specimen is magnified as it’s  projected to eye ­3 important parameters in microscopy  ­magnification = ratio of object’s image size to real size ­LM mag. to 1,000x actual size ­resolution = measure of clarity of image ­LM cannot resolve more than 0.3 micrometers ­regardless of mag. ­contrast = difference in brightness between light and dark areas ­staining & labeling cell components enhance contrast ­organelles: membrane­enclosed structures in eukaryotic cells ­until recently LM resolution barrier prevented studying  ­electron microscope (EM): focuses beam of elections through specimen or onto  its surface ­resolution inversely related to wavelength of light ­shorter wavelengths than vis. light ­theoretically can resolve about 0.002 nanometers  ­in practice can only resolve about 2 nanometers ­scanning electron microscope (SEM): electron beam scans surface o sample  usually coated w/ film of gold; beam excited surface e­ and secondary e­ are  detected by device that translate pattern of e­ into electronic signal sent to video  screen ­useful for detailed topography ­3D look ­uses electromagnets as lenses not glass ­transmission electron microscope (TEM): aims electron beam through thin  section of specimen; specimen stained w/ atoms of heavy metals which attaches to cell struct.; some parts of cell’s e­ density are enhanced ­image displays pattern of transmitted e­ ­study internal structure of cells ­uses electromagnets as lenses not glass ­advantage of EM… ­subcellular struc. revealed ­disadvantage of EM… ­methods for prep kill specimen ­cytology = study of cell struc.   A. Cell Fractionation ­cell fractionation: takes cells apart & separates organelles & subcellular struc.  from one another ­centrifuge used 6.2 Eukaryotic Cells Have Internal Membranes that Compartmentalizes Their Functions ­Bacteria & Archaea = prokaryotic  ­protists (unicellular eukaryotes), fungi, animals, plants = eukaryotic A. Comparing Prokaryotic & Eukaryotic Cells ­cytosol: semifluid, jellylike substance where subcellular components suspend ­eukaryotic cell: most of DNA is in the nucleus bounded by a double membrane ­prokaryotic cell: DNA is concentrated in nucleoid; not membrane enclosed ­eukaryotic = true nucleus ­cytoplasm: interior of a cell ­in eukaryotes = btwn nucleus & plasma mem. ­in prokaryotes =  ­prokaryotes don’t have membrane­bound struct. ­organized in diff. regions ­eukaryotic cells larger ­plasma membrane: selective barrier that allows passage of oxygen, nutrients,  wastes ­ratio to volume is critical ­when cell grows, surface area grows less than volume ­utilize microvilli or folds ­larger organisms DO NOT have larger cells, they have more cells B. A Panoramic View of the Eukaryotic Cell 6.3 The Eukaryotic Cell’s Genetic Instructions Are Housed in The Nucleus And Carried Out By  the Ribosomes A. The Nucleus: Information Central ­nucleus: contains genes in eukaryotic cell ­nuclear envelope: encloses the nucleus; separates from cytoplasm ­double membrane ­lipid bilayer ­pore complex = intricate protein structure regulating entry & exit of  proteins & RNAs & macromol. ­nuclear lamina: netlike protein filament array giving nucleus the shape w/  mechanical support ­not @ pores ­nuclear matrix = framework of protein fibers through nuclear interior ­chromosomes: in nucleus how DNA is organized into discrete units ­each has one long DNA mol. w/ associated proteins ­chromatin: complex of DNA & protein making up chromosomes  ­chromosomes can’t be distinguished ­nucleolus: dense granules & fibers joining chromatin  ­where rRNA (ribosomal RNA) is synthesized ­proteins imported from cytoplasm are assembled w/ rRNA into large &  small ribosome subunits ­nucleus directs protein synthesis ­synthesizes mRNA (messenger RNA) according to DNA ­mRNA transported to cytoplasm by nuclear pores ­ribosomes translate mRNA genetic message into primary structure  B. Ribosomes: Protein Factories ­ribosomes: complexes made of rRNA & protein; carry out protein synthesis ­NOT an organelle b/c not membrane bound ­free ribosomes = suspended in cytosol ­proteins made by them funx in cytosol ­ex. enzymes ­bound ribosomes = attached to endoplasmic reticulum ­proteins made by them are inserted into membrane or packaged into  lysosome or secreted ­can alternate btwn free & bound 6.4 The Endomembrane System Regulates Protein Traffic & Performs Metabolic Functions in  the Cell ­endomembrane system: nuclear envelope, endoplasmic reticulum, Golgi apparatus,  lysosomes, vesicles, vacuoles, plasma membrane ­tasks… ­protein synthesis, protein transport into membranes & organelles & out,  metabolism, lipid movement, poison detox ­vesicles: sacs of membrane A. The Endoplasmic Reticulum: Biosynthetic Factor ­endoplasmic reticulum (ER): extensive network of membranes; more than half of total membrane in eukaryotic cells ­ER lumen = cavity/ cisternal space separate from cytosol by ER mem. ­smooth ER: no bound ribosomes ­rough ER: bound ribosomes a. Functions of Smooth ER ­lipid synthesis, carbohydrate metabolism, poison detox, calcium ion  storage ­steroids, sex hormones ­secreted ­adding hydroxyl to drug mol.  ­more soluble ­> easy to flush out b. Functions of Rough ER  ­secreted protein production ­glycoproteins: proteins w/ carbohydrates covalently bonded  ­built into ER membrane ­transport vesicles: vesicles in transit from one part of cell to others ­membrane factory for cell ­makes membrane phospholipids from cytosol precursors B. Golgi Apparatus: Shipping & Receiving Center ­Golgi apparatus: warehouse for receiving, sorting, shipping, & some manufact. ­products of ER are modified & stored & sent to other destination ­flattened membranous sacs = cisternae ­structural directionality ­cis face = where vesicles from ER can add membrane to Golgi  ­trans face = where vesicles pinch off & travel to other sites  ­manufactures some macromolecules ­pectin, non cellulose polysaccharides ­cisternal maturation model = cisternae of Golgi progress forward from cis to  trans face carrying modified cargo during move ­ molecular identification tags added like mailing labels ­ex. phosphate groups ­transport vesicles from Golgi have external mol. on membrane that recog.  “docking sites” on specific organelle surfaces or plasma mem.  ­correct targeting of vesicles C. Lysosomes: Digestive Compartments ­lysosome: membranous sac of hydrolytic enzymes for digesting macromol. ­too many lysosome leakages can destroy cell by self­digestion ­hydrolytic enzymes & membrane made by rough ER ­then transferred to Golgi for processing  ­3D shapes of proteins protect vulnerable bonds from own enzymatic attack ­phagocytosis: eating by engulfing smaller organisms/ food ­ex. amoebas & unicellular eukaryotes, some human cells (macrophages) ­autophagy = recycle cell’s own organic material ­Tay­Sachs disease caused by accumulation of lipids b/c lipid­digesting  enzyme is missing/ inactive ­brain is impaired D. Vacuoles: Diverse Maintenance Compartments  ­vacuoles: large vesicles from endoplasmic reticulum & Golgi apparatus  ­food vacuoles: formed by phagocytosis  ­contractile vacuoles: pumps excess water out of cell  ­in unicellular eukaryotes in fresh water ­maintain suitable conc. of ions & molec.  ­certain vac. in plants & fungi have enzymatic hydrolysis carried out ­plants have small vac. to reserve organ. compounds  ­help protect plants against herbivores b/c have poisonous compounds stored ­some have pigments to attract pollination ­central vacuole: coalescence of smaller vacuoles in mature plant cells ­cell sap made inside E. The Endomembrane System: A Review Concept Check 6.4 1. Describe functional and structural distinctions between rough and smooth ER. The rough ER has ribosomes; both make phospholipids 2. Describe how transport vesicles integrate the endomembrane system. Substances are enclosed between endomembrane components.  3. Describe the proteins path through the cell staring with the mRNA molecule  that specifies the protein if a protein function in the ER but requires  modification in the Golgi apparatus before achieving that function.  mRNA is synthesized in the nucleus and then to nuclear pore and then to  bound ribosome on the rough ER where protein is synthesized and transport  vesicle takes the protein to the Golgi apparatus and then back the ER. 6.5 Mitochondria & Chloroplasts Change Energy From One Form to Another ­mitochondria: site of cellular respiration; oxygen to ATP by extracting nrg from sugars ­chloroplasts: sites of photosynthesis A. The Evolutionary Origins of Mitochondria and Chloroplasts  ­endosymbiont theory: early ancestry of eukaryotic cells engulfs oxygen­using­ non­photosynthetic prokaryotic cell B. Mitochondria: Chemical Energy Conversion ­double phospholipid bilayer ­outer membrane is smooth ­cristae: membrane inner foldings ­creates larger surface area ­mitochondrial matrix: enclosed by inner membrane ­composed of enzymes C. Chloroplasts: Capture of Light Energy ­double membrane ­thylakoids: another membranous system of flattened interconnects sacs ­granum: thylakoid stacks ­stroma: fluid outside the thylakoids; contains chloroplast DNA ­plastids: chloroplasts a member of this specialized family ­ex. amyloplasts = colorless organelle that stores starch (amylose) ­ex. chromoplast = gives yellow/orange color to fruits & flowers D. Peroxisomes: Oxidation ­peroxisome: specialized metabolic compartment bound by single membrane ­enzymes remove hydrogen atoms from substrates & transfer to oxygen ­produces hydrogen peroxide ­ex. glyoxysomes = fat storing tissues of plants have these to converse  fatty acid to sugar Concept Check 6.5 1. Describe two common characteristics of chloroplasts and mitochondria.  Function = energy Membrane structure = folding or thylakoid membrane for larger surface area 2. Do plant cells have mitochondria? Explain. Yes; mitochondria make energy from sugars 3. Argue against why mitochondria and chloroplasts should be classified in the  endomembrane system. Neither are synthesized by the ER and are not bound to a single membrane.  6.6 The Cytoskeleton is a Network of Fibers that Organizes Structures & Activities in the Cell ­cytoskeleton: network of fibers extending throughout cytoplasm A. Roles of the Cytoskeleton: Support & Motility ­obvious function = mechanical support & maintain shape ­especially important for animal cells b/c no cell walls ­some cell motility  ­motor proteins: interacts w/ cytoskeleton to move ­ex. how vesicles w/ neurotransmitter mol. migrate to axon tips ­manipulates plasma membrane ­bending to form food vacuoles/ phagocytic vesicles B. Components of the Cytoskeleton a. Microtubules ­microtubules: hollow rods constructed from globular protein (tubulin) ­each protein is a dimer = mol. of 2 subunits ­alpha­tubulin & beta­tubulin  ­grows by adding dimers ­one end can accumulate or release tubulin dimers @ higher rate ­plus end ­guides vesicles from ER to Golgi apparatus to plasma membrane i. Centrosomes & Centrioles ­centrosome: where microtubules grow out of ­near nucleus ­centrioles: within centrosome; composed of 9 sets of triplet  microtubules in a ring shape ii. Cilia & Flagella ­flagella & cilia: microtubule­containing extensions that project  from some cells ­flagella undulate like a fish tail ­cilia work like oars w/ alt. power & recovery strokes ­cilia can be signal­receiving “antenna”  ­motile will have nine doublets of microtubules in a ring shape w/  2 single microtubules in center ­ “9+2” ­non­motile will have “9+0” ­basal body: what cilia/flagella are anchored by; struct. similar to  centriole ­ “9+0” like a centriole  ­sperm flagellum becomes centriole when entering the egg ­dyeins: large motor proteins that bend the flagella & motile cilia ­attached along outer microtubule doublet ­2 “feet” that “walk” along microtubule of adjacent doublet ­using ATP b. Microfilaments (Actin Filaments) ­microfilaments: thin solid rods built by actin ­actin: globular protein ­twisted double chai of actin subunits ­like microtubules, present in all eukaryotic cells ­NOT compression­resisting like microtubule but tension bearing ­cortical microfilaments = support cell shape ­cortex: outer cytoplasmic layer of cell ­shaped by cortical microfila. to be semisolid consistency of gel ­myosin: protein that makes up actin filaments & thicker filaments  ­interaction causes contraction of muscle cells ­pseudopodia: extending cellular extensions that allow cell to crawl along  a surface ­cytoplasmic streaming: circular flow of cytoplasm within cells ­actin­myosin interactions contribute c. Intermediate Filaments ­intermediate filaments: named for diameter; only found in cells of some  animals (ex. vertebrates) ­specialized for bearing tension ­each constructed from family of proteins who include keratins ­more permanent than microfilaments & microtubules ­persist even after cell death ­especially sturdy for reinforcing shape of a cell & position of organelles ­ex. nucleus sits in cage of intermediate filaments End of Chapter 6 Qs 1. Which structure is not part of the endomembrane system? A. Nuclear envelope C. Golgi apparatus B. Chloroplast D. Plasma membrane 2. Which structure is common to plant and animal cells? A. Chloroplast C. Mitochondrion B. Central vacuole  D. Centriole 3. Which of the following is present in a prokaryotic cell? A. Mitochondrion C. Nuclear envelope B. Ribosome Chloroplasts 6.  What is the most likely pathway taken by a newly synthesized protein that will be secreted by a cell? A. Golgi→  ER  →  Lysosome B. Nucleus→  ER →  Golgi C. ER →  Golgi →  vesicles that fuse with plasma membrane D. ER →  Lysossome →  vessicels that fuse with plasma membrane 7. Which cell would be best for studying lysosomes? A. Muscle Cell B. Nerve Cell  C. Phagocytic White Blood Cell D. Bacterial Cell


Buy Material

Are you sure you want to buy this material for

50 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Jennifer McGill UCSF Med School

"Selling my MCAT study guides and notes has been a great source of side revenue while I'm in school. Some months I'm making over $500! Plus, it makes me happy knowing that I'm helping future med students with their MCAT."

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Parker Thompson 500 Startups

"It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.