New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

calculus review for first exam

by: Samantha Notetaker

calculus review for first exam MA 241

Samantha Notetaker

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

basic list of things needed to know for the exam and explanations on how to do it
calculus and analytical geometry I
Keke Wang
Study Guide
Math, Calculus, exam, review, study, guide, Derivatives, functions, Rules, Rules of Derivatives, Tangent, Limits
50 ?




Popular in calculus and analytical geometry I

Popular in Mathmatics

This 8 page Study Guide was uploaded by Samantha Notetaker on Thursday September 22, 2016. The Study Guide belongs to MA 241 at Embry-Riddle Aeronautical University - Prescott taught by Keke Wang in Fall 2016. Since its upload, it has received 9 views. For similar materials see calculus and analytical geometry I in Mathmatics at Embry-Riddle Aeronautical University - Prescott.


Reviews for calculus review for first exam


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 09/22/16
MA 241 Study Guide Topics or skills to specifically study from homework and quizzes:  State values of the given graph and find domain and range (Homework 1)  Determine if graphs are functions or not (Homework 1)  Find domain with only given equation (Homework 1)  Match graphs with equations and vice versa (Homework 1)  Transitions: up, down, right, left, compress, stretch, reflect over x and y axis    (Homework 2)  Forming the equation given only transitions or graph (Homework 2)  Explain what the equation means (Homework 3)  Finding limit values from functions using limit laws (Homework 3)  Determine graphs that satisfy given conditions (Homework 3)  Adding, dividing, multiplying, subtracting limits (Homework 4)  Evaluate limits (Homework 4)  Identify problems with limit equations (Homework 4)  Find limits (Homework 4)  Discontinuities (Homework 5)  Jumps (Homework 5)  Explain discontinuities (Homework 5)  Removing discontinuities (Homework 5)  Derivate and derivative rules (Homework 6)  Tangent lines (notes) Examples of bulleted list above: (a) State value of f (1): 3 Look at where x=1 and go up to a point where it matches with the y axis (b) State value of f (3): 1 Do the same as part a  (c) State value of f (0): 1 (d) State domain and range of f   Domain: [­2,4] (we use the [ because these numbers are included in the domain and  range, if they weren’t you would use parenthesis)  Range: [­1,3] To find domain look at where the line on the graph starts at the x axis and follow from left to  right where it starts and stops tells you the domain. To find the range you simply start at the  bottom and go up looking at the y axis where its lowest point and highest point tells you the  range. Usually they will ask for it in interval notation. To determine if this graph is a function or not use the pencil rule as described in my first notes. The graph above is a function because it does not touch the y­axis at more than one point at a  time x3 x +2 x−24 f (x) = 5 ­3/  you set the denominator to zero and factor it out which leads you to (x+6) (x­4) because you take the product of the ­24 but its sum has to be equal to 2x. The only numbers that do that are ­6 and  4, so the domain is x is equal to all real numbers but x cannot equal 0. Therefore, the domain is:   (­∞, ­6) U (­6,4) U (4, ∞) The “U” means union which basically means there’s a whole between  those numbers. Matching equations:  6 f (g):  x           this would leave you with the last line in the graph 2 f (h): x    this is a quadratic function which means the graph is a parabola f (f):  x 3 this is a cubic function so it’s basically just a stretched parabola y = f (x) +3 this shifts the graph up 3 or whatever the constant seems to be y = f (x) ­3 this shifts the graph down 3 units  y = f (x+3): shifts 3 units to the left y = f (x­3) shifts 3 units to the right y = 3*f(x) stretches graph vertically by a factor of 3 y = (1/3) *f (x) compresses vertically graph by a factor of 3 y = f (3x) compresses graph horizontally by a factor of 3 y = f (1/3x) stretches horizontally graph by a factor of 3 y = ­f (x) reflects graph over the x axis y = f (­x) reflects graph over the y axis Say you have a transition of 3 units down, the graph is compressed horizontally by a factor of 2  and its reflected over the y axis. Your equation based on rules above: y = (­2x)­3 Equation: ­(3x+3)­2 This equation states that the graph is reflected over the x axis, compressed horizontally by a  factor of 3, shifted left 3 units and shifted down 2 units.  Limit laws: Lim[f(x) + or ­ g (x)] = lim f (x) + or – lim g (x) Lim [c*f(x)] = c* lim f (x) Lim [ f (x) * g (x)] = lim f (x) * g (x)  Lim f(x)/ g (x) = lim f(x)/ lim g (x) (g (x) cannot equal zero) n n Lim [ f(x) ¿  = [ lim f (x) ¿   ( N has to be a positive integer) Lim C = C  Lim  x n  where x approaches a =  a n  (n has to be a positive integer) Lim  √ x  where x approaches a =  √ a  (where n is a positive integer if n is even we assume  that a is greater than 0) n n Lim  √ f (x) =  √ lim ?f (x) (where n is a positive integer 2 of n is even we assume that lim  f(x) is greater or equal to 0)  Direct substitution property: =if f is a polynomial or a rational function and a is in the domain of  f.    (this should be your first result when trying to find a limit) Conjugate property: when the equation involves a root function you can cancel out the root by  multiplying it by its conjugate.  Graphs that satisfy given conditions: 2  f(x) = 4+x if x< ­2,  x  if ­2 ≤ x < 2, 6­x if x ≥ 2    the graph would be: Discontinuities and continuities: The limit of a function as x approaches a can often be found simply by calculating the value of  the function at a. Functions with this property is determined a continuous at a.  Requirements for this property: 1. Lim f(x) exists 2. Lim f(x) = f (a) 3.  f (a) is defined If you fail one of these conditions, then you need to remove that discontinuity by factoring out  the equation. However, you can have infinite discontinuity or a jump discontinuity  The Intermediate Value Theorem: suppose that f is continuous on [a, b], and let N be and number between f (a) and f (b) where f (a) does not equal f (b) then there exists a number c. Tangent lines: The tangent line to the curve y =f(x) at the point (p(a), f (a)) is the line through p with slope     m= lim as x approaches a f(x)­ f(a)/ x­a  provided that this limit exists the equation of the tangent line is y­ f(a)= m(x­a)  Derivatives and rules: The derivative of a f is denoted by f ‘(x) (prime of f)   d/d(x)= (C)=0 x ¿ xn−1  d/d(x)= ( = n  (Power Rule very important)  d/d(x)= (C* f(x)) = c* d/d(x) (f(x))  d/d(x)= [ f(x) +or – g(x)] = d/d(x) (f(x)) +or – d/d(x) (g(x)) The sine and cosine functions:  d/d(x) (sin(x)) = cos (x)  d/d(x) (cos(x)) = ­sin(x) Product Rule: [f(x)+g(x)]’= f’(x)* g(x) + f(x)* g’(x) Quotient rule: 2 [f(x)/g(x)]’ = f’(x)* g (x) – f(x)* g’(x)/  x


Buy Material

Are you sure you want to buy this material for

50 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Bentley McCaw University of Florida

"I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"

Anthony Lee UC Santa Barbara

"I bought an awesome study guide, which helped me get an A in my Math 34B class this quarter!"

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Parker Thompson 500 Startups

"It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.