New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

BIOL 102 Exam #2 (9/27/16) Study Guide

by: Zach Notetaker

BIOL 102 Exam #2 (9/27/16) Study Guide BIO 102

Marketplace > University of South Carolina > BIO 102 > BIOL 102 Exam 2 9 27 16 Study Guide
Zach Notetaker

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

These notes cover the information presented in the lecture presentations on Chapters 25 (slides 72 and up), 26, 27, 28, and 29. They also include pictures taken from the slideshows to visually repr...
General Biology
Mihaly Czako
Study Guide
50 ?




Popular in General Biology

Popular in Department

This 9 page Study Guide was uploaded by Zach Notetaker on Saturday September 24, 2016. The Study Guide belongs to BIO 102 at University of South Carolina taught by Mihaly Czako in Fall 2016. Since its upload, it has received 149 views.


Reviews for BIOL 102 Exam #2 (9/27/16) Study Guide


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 09/24/16
BIOL 102 Exam Study Guide Ch. 25(slides 72+)­29 Exam #2 Study Guide  Homeotic Genes: determine basic features like where wings and legs will develop on a bird or  how a flower’s parts are arranged o Hox genes: class of homeotic genes that provides positional info during animal  embryonic development  if expressed in WRONG LOCATION  body parts can be produces in WRONG  LOCATION  ex) Monster fruit fly w/ a million eyes  Changes in Genes:   o New morphological forms likely come from gene duplication that produce new  developmental genes o Specific changes in Ubx genes identified that can “turn off” leg development  Changes in Gene Regulation: o Changes in morphology likely result from changes in regulation of developmental genes  rather than changes in sequence of developmental changes  ex) threespine sticklebacks in lakes have fewer spines than their marine relatives  gene sequence remains same, but regulation of gene expression is different in 2 groups of fish  Evolution is like tinkering  new forms arise by slight modification of existing forms  Evolutionary Novelties: o Most novel biological structures evolve in many stages from previously existing  structures o Complex eyes have evolved from simple photosensitive cells independently many times o Exaptations: structures that evolve in one context but become co­opted for different  functions o Natural selection can only improve structure in context of current utility  Evolutionary Trends:  o Extracting single evolutionary progression from fossil record can be misleading o Trends should be examined in broader context o DON’T imply intrinsic drive toward particular phenotype o Similar environment factors = similar adaptations  Taxonomy: scientific discipline that classifies and names organisms  Systematics: classifies organisms and determines evolutionary relationships  Phylogeny: evolutionary history of species or group of related species  o Phylogenetic trees show patterns of descent, NOT phenotypic similarity o Phylogenetic trees don’t indicate WHEN a species evolved or how much change occurred in lineage o NOT assumed that taxon evolved from taxon next to it  Homoplasies (a homoplasy): analogous structures or molecular sequences that evolved  independently   Cladistics: groups organisms by common descent o Clade: group of species that includes ancestral species and all its descendants  Mono phyletic: a valid clade that consists of the ancestor species and all of its  descendants  Para phyletic: an invalid clade consisting of an ancestral species and some, but  NOT ALL, of the descendants  Poly phyletic: an invalid clade including distantly related species but does NOT  include their most recent common ancestor  Shared ancestral character: character that originated in an ancestor of the taxon  Shared derived character: evolutionary novelty unique to a particular clade o character can be both ancestral and derived, depending on context  Molecular clock: uses constant rates of evolution in some genes to estimate the absolute time of  evolutionary change  o calibrated against branches whose dates are known from fossil record o individual genes vary in how clocklike they are  Domains: Bacteria, Archaea, Eukarya  Kingdoms: Protista, Plantae, Fungi, Monera (prokaryotes), Animalia  Horizontal Gene Transfer: movement of genes from one genome to another o tree of life suggests that eukaryotes and archaea more closely related than bacteria o tree of life based largely on rRNA genes; however, some other genes reveal different  relationships o key role in evolution of prokaryotes and eukaryotes  Prokaryotes found in every possible habitat…  Ex) Utah’s Great Salt Lake pink color comes from living prokaryotes o Thrive almost everywhere o Mostly microscopic o LOTS OF THEM o Divided into two domains: bacteria and archaea  Earth’s early organisms were likely prokaryotes o unicellular, but some form special colonies  o variety of shapes  o common shapes: spheres (coccus/cocci), rods (bacillus, bacilli), and spirals  Cell Surface Structures:  o Cell walls  maintains cell shape, protects cell, prevents bursting in hypotonic environment o Eukaryote cell walls made of cellulose or chitin o Bacterial cell walls contain peptidoglycan: network of sugar polymers cross­linked by  polypeptides  o Scientists use gram stain to classify bacteria by cell wall composition  Gram­positive: bacteria w/ simpler walls and a large amount of peptidoglycan  Gram­negative: bacteria w/ less peptidoglycan and an outer membrane that can  be toxic to humans o Archaea contain polysaccharides and proteins BUT lack peptidoglycan; stain mostly  Gram­negative (BUT staining doesn’t correlate w/ taxonomic subdivisions)  Antibiotics target peptidoglycan and damage bacterial cell walls  o Gram­negative bacteria more likely to be antibiotic resistant o Polysaccharide or protein layer called capsule covers many prokaryotes   Many prokaryotes form metabolically inactive endospores, can remain viable in harsh  conditions for centuries  Some prokaryotes have fimbriae  allow them to stick to their substrate or other individuals in a colony o Pili/pilus (sex pili) longer than fimbrae and allow prokaryotes to exchange DNA  Many bacteria exhibit taxis  ability to move toward or away from stimulus  o Chemotaxis  movement toward or away from chemical stimulus o Most propel themselves by flagella scattered about surface or concentrated at one or both  ends   Flagella of bacteria, archaea, and eukaryotes composed of different proteins  and likely evolved independently  Internal Organization and DNA in Prokaryotic cells: o usually lack complex compartmentalization o specialized membranes that perform metabolic functions  usually infoldings in plasma membrane  o less DNA than eukaryotic genome o mostly circular chromosomes  not surrounded by membrane, located in nucleoid region o some species have smaller rings of DNA called plasmids  Reproduction: o prokaryotes reproduce quickly  binary fission (can divide every 1­3 hours) o Key features:  small, binary fission, SHORT generation times o Considerable genetic variation:  3 factors:      Rapid Reproduction and Mutation: Prokaryotes reproduce by binary fission, offspring cells are generally  identical Mutation rates w/ binary fission are low, but because of rapid  reproduction, mutations can accumulated rapidly in a population short generation time = evolve quickly NOT “primitive”  prokaryotes are highly evolved  Genetic Recombination:  combining of DNA from 2 sources, contributes to diversity  DNA from different individuals brought together by transformation,  transduction, and conjugation  movement of genes among individuals from different species   horizontal gene transfer  Transformation: prokaryotic cell can take up an incorporate foreign DNA from  surrounding environment   Transduction: movement of genes between bacteria by bacteriophages (viruses  that infect bacteria)      Conjugation and Plasmids:  process where genetic material is transferred between  prokaryotic cells (equivalent to mating or sexual  reproduction)  in bacteria, DNA transfer is one way  donor cell attached to recipient by pilus, pulls it closer, and  transfers DNA   piece of DNA called F factor is required for the production of pili     F Factor as a Plasmid: o Cells containing F plasmid function as   DNA  DONORS during conjugation o Cells w/out F factor function as DNA  RECIPIENTS during conjugation o F factor transferable during conjugation.  F Factor in the Chromosome: o cell w/  F factor   BUILT INTO    chromosomes function as donor during  conjugation o recipient becomes RECOMBINANT  bacterium w/ DNA from 2 different cells  o R Plasmids and Antibiotic Resistance:  R plasmids: carry genes for antibiotic resistance   antibiotics kill sensitive bacteria, but NOT bacteria w/  specific R plasmids  Thru natural selection, fraction of bacteria w/ genes for  resistance increases in population exposed to antibiotics   antibiotic resistant strains are becoming more common     Metabolic diversity of prokaryotes: o photoautotrophs  energy from light o chemoautotrophs  energy from inorganic chemicals  o photoheterotroph  energy from light but needs organic compounds to live o chemoheterotroph  energy from organic compounds      Oxygen in Metabolism: o Obligate aerobes require Oxygen for cellular respiration o Obligate anaerobes poisoned by O2 and use fermentation or anaerobic respiration o Facultative anaerobes can survive W/OUT Oxygen   Nitrogen fixation: convert atmospheric nitrogen (N2) to ammonia (NH3) o nitrogen essential for production of amino acids and nucleic acids   Bacteria  o (subgroup  Alpha Proteobacteria)  Rhizobium  forms root nodules in legumes and fixes atmospheric N2  Agrobacterium  produces tumors in plants and is used in genetic engineering  o (subgroup  Gamma Proteobacteria)  Escherichia coli resides in the intestines of mammals and isn’t normally  pathogenic  Extremophiles: archaea that live in extreme environments  o Extreme halophiles: live in highly saline environments o Extreme thermophiles: thrive in very hot environments   Methanogens: live in swamps and marshes & produce methane as waste product  o strict anaerobes & are poisoned by Oxygen gas  Symbiosis: two species live close together (larger host and smaller symbiont)  Mutualism: both symbiotic organisms benefit  Commensalism: one organism benefits while neither harming nor helping the other in any major way  Parasitism: organism called parasite harms BUT doesn’t kill host o Parasites that cause disease are called pathogens  Exotoxins: secreted by pathogenic prokaryotes and causes disease even if prokaryotes that  produce them are not present  Endotoxins: released only when bacteria die and their cell walls break down (outer membrane of Gram­negative bacteria)  Bioremediation: use of organisms to remove pollutants from environment o bacteria can be engineered to produce vitamins, antibiotics, and hormones   Protists = informal name of group of mostly unicellular eukaryotes  o constitute a polyphyletic group (no longer a valid kingdom) o structural and functional diversity  most unicellular but some are colonial and multicellular  single­celled can be very complex  o Mixotrophs  combine photosynthesis and heterotrophic nutrition o Heterotrophs  absorb organic molecules or ingest larger food particles o Photoautotrophs contain chloroplasts  o Some reproduce asexually or sexually by sexual process of meiosis and fertilization   Endosymbiosis: relationship b/w two species in which one organism lives inside the cell or cells of other organism (host)  Secondary endosymbiosis: ingested by heterotrophic eukaryote  Excavata: protists w/ modified mitochondria and protists w/ unique flagella o characterized by cytoskeleton o “excavated” feeding groove  o includes Trichomonas, Giardia  “SAR” clade: diverse monophyletic supergroup  o controversial o includes brown algae (kelp), diatoms, Plasmodium (malaria) o Diatoms: unicellular algae w/ unique 2­part, glass­like wall of silicon dioxide  major component of phytoplankton and are highly diverse o Brown algae: largest and most complex algae  multicellular, includes “seaweeds”      Parts: Holdfast: anchors the alga Stipe: stem like structure that supports the blades Blades: leaf­like structure supported by stipe  Apicomplexans: parasites of animals and some cause serious human disease o most have sexual & asexual stages that require 2 or more different host species for  completion   Red algae and green algae are closest relatives of land plants  Archaeplastida: supergroup that includes red algae, green algae, and land plants  o Red algae: reddish in color due to pigment called phycoerythrin  usually multicellular  most abundant large algae in coastal waters of tropics o Green algae: named for grass­green chloroplasts  in paraphyletic group, plants descended from green algae  2 main groups:  Charophytes: most closely related to land plants  Chlorophytes  Unikonta: supergroup that includes animals, fungi, and some protists o 2 clades: amoebozoans, and opisthokonts  Entamoebas: parasites of vertebrates and some invertebrates  Opisthokonts: includes animals, fungi, and several groups of protists   Protists = (MAJOR) KEY roles in ecological communities: o found in diverse aquatic and moist terrestrial environments       Rol :  Symbiont Symbiotic protists: o some benefit their hosts  ex) dinoflagellates nourish coral polyps that build reefs  wood­digesting protists inhabit the gut of termites  Producer: obtain energy from the sun Aquatic environments: photosynthetic protists and prokaryotes are main  producers photosynthetic protists limited by nutrients o w/ rising sea temperatures biomass of photosynthetic protists have  declined  Greening of Earth: o Cyanobacteria & protists likely existed on land 1.2 billion yrs ago o 500 million yrs ago  small plants, fungi, animals on land  o 290,000 living species of plants o Land plants: having terrestrial ancestors, even though some are aquatic  DON’T include photosynthetic protists (certain algae)  Green algae (charophytes) closest relatives of land plants: o Comparisons of nuclear and chloroplast genes are evidence   LAND PLANTS DID NOT DESCEND FROM MORDERN CHAROPHYTES      Share the following traits:  Rings of cellulose­synthesizing proteins (enzyme rosette)(non­morphological  character)  Structure of flagellated sperm  Formation of phragmoplast (in telophase of cytokinesis)  Charophytes have layer of durable polymer sporopollenin prevents exposed zygotes from drying  out: o also found in plant spore walls o movement on land by charophyte ancestors provided unfiltered sun, more plentiful CO2  and nutrient­rich soil o land represented challenges: a scarcity of water and lack of structural support     Desired Traits of Plants: o 5 key traits appear in nearly all land plants BUT are absent in charophytes (derived  character = NOT shared ancestral character)  1 .     Alternations of generations: a. Plants alternate b/w 2 multicellular stages, reproductive cycle called  alternation of generations b. gametophyte: haploid and produces haploid gametes by mitosis c. Fusion of gametes gives rise to diploid sporophyte, which produces  haploid spores by meiosis  2 .     Multicellular, dependent embryos: a. Diploid embryo is retained w/ in tissue of female gametophyte b. Nutrients transferred from parent embryo thru placental transfer cells  c.   Land plants called embryophytes because of dependency of embryo  on parent.  3 .     Walled spores produced in sporangia: a. Sporophyte produces spores in organs called sporangia b. Diploid cells called sporocytes undero meiosis to generate haploid  spores c. Spore walls contain sporopollenin, makes them resistant to harsh  environments  4 .     Multicellular Gametangia:  a. Gametes produces w/in organs called gametangia b.  Female gametangia, called archegonia, produce eggs and are site of  fertilization c. Male gametangia, called antheridia, produce and release sperm  5 .     Apical Meristems: a. Plants sustain continual growth in apical meristems b. Cells from apical meristems differentiate into various tissues  o Additional derived traits: o Cuticle: waxy covering of epidermis o Stomata: openings b/w cells that allow for gas exchange b/w outside air and plant o Mycorrhizae: symbiotic association b/w fungi and land plants that may have  helped plants w/out true roots to obtain nutrients   Land plants can be informally grouped based off presence or absence of vascular tissue   Most plants have vascular tissue; these constitute the vascular plants (vascular tissue = vascular  plant)  Ferns and other seedless vascular plants 1  to grow tall: o Vascular tissues allowed plants to grow tall o Seedless vascular plants have flagellated sperm and are usually restricted to moist  environments  ALL seed plants are heterosporous  Heterosporous species produce megaspores, which give rise to female gametophytes, and  microspores, give rise to male gametophytes


Buy Material

Are you sure you want to buy this material for

50 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Amaris Trozzo George Washington University

"I made $350 in just two days after posting my first study guide."

Bentley McCaw University of Florida

"I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"


"Their 'Elite Notetakers' are making over $1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.