New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Anatomy and Physiology Final Study Guide

by: Natalie Azzouni

Anatomy and Physiology Final Study Guide Bio 210

Marketplace > California State University - Fullerton > Biology > Bio 210 > Anatomy and Physiology Final Study Guide
Natalie Azzouni
Cal State Fullerton
GPA 3.5

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

In these notes: functions of cardio vascular system, coverings and walls of the heart, blood flow, heart chambers and valves, path of blood through heart, cardiac conduction system, automatic nervo...
Anatomy and Physiology
Mackenzie MacSween
Study Guide
Science, Biology, anatomy, Physiology
50 ?




Popular in Anatomy and Physiology

Popular in Biology

This 10 page Study Guide was uploaded by Natalie Azzouni on Friday September 30, 2016. The Study Guide belongs to Bio 210 at California State University - Fullerton taught by Mackenzie MacSween in Summer 2015. Since its upload, it has received 5 views. For similar materials see Anatomy and Physiology in Biology at California State University - Fullerton.

Similar to Bio 210 at Cal State Fullerton


Reviews for Anatomy and Physiology Final Study Guide


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 09/30/16
Human Anatomy & Physiology Final Study Guide  1.    F unctions of the Cardio Vascular (CV) system:  ­provides oxygen and nutrients to tissue, removes waste ­transports substances between large cells & the external environment ­maintains a stable internal environment (homeostasis) ­immune system components (white blood cells) ­hormones  ­red blood cells­ oxygen and gas transport ­platelets­ cell fragments. No nucleus. Initiate blood clot. Close blood vessel breaks ­plasma­ clear liquid­ water, amino acids, proteins, carbs, lipids, vitamins, hormones,  electrolytes, and cellular waste.  Blood vessels­ arteries, arterioles, metarterioles, capillaries, venules, and veins. 2.     the coverings of the heart (in order from bottom of heart: visceral pericardium, pericardial fluid/cavity, parietal pericardium,  fibrous pericardium)  visceral pericardium: innermost layer, covers the heart. Same as epicardium.   pericardial cavity/fluid: space in between the v.p. and parietal pericardium :(absorbs shock  of beating heart)parietal pericardium­it decreases friction and contains serous fluid­parietal  pericardium: when the visceral pericardium turns back on itself to create a second layer   parietal pericardium­ outside of organ=parietal.   fibrous pericardium: outermost layer, encloses the heart 3.     the walls of the heart ­epicardium: outer layer, protects the heart by decreasing friction ­myocardium: middle layer, mostly cardiac muscles that forces blood out of the heart chambers.  ­endocardium: inner layer, contains blood vessels and purkinje fibers. Reduce friction between the  blood and the walls of the blood vessels.  4.      the pulmonary circuit of blood flow  Starts in the Right Ventricle (dealing with deoxygenated blood) → goes through the  Pulmonary Semilunar Valve → Enters the Pulmonary trunk → goes through the left and right  pulmonary arteries → lungs → pulmonary veins → ends when blood enters the left atrium  (dealing with oxygenated blood). Starts at RV, goes to lungs for O , comes2back to heart into LA.  5.      the systemic circuit of blood flow: left ventricle→ aortic valve ➡ aorta→ out to the body  where hemoglobin picks up Co2 and releases O2→ deoxygenated blood makes its way back to the  heart via superior vena cava/inferior vena cava/coronary sinus → right atrium. Starts at LV,  transports blood from heart to body cells and back to heart again. Ends at RA.  6.      heart chambers and valves  Right Atrium: thin walls, receives deoxygenated blood from the body   Right Ventricle : lower chamber of the heart, receives blood from the right atrium   Left Atrium: thin walls, receives oxygenated blood from the lungs   Left Ventricle: lower chamber of the heart, receives blood from the left atrium  Atrioventricular Valves: o Tricuspid valve: this is the valve blood passes through as it is leaving the right atrium and entering the right ventricle­ regulates flow of blood from atrium to ventricle o Bicuspid (Mitral) Valve: this is the valve blood passes through as it is leaving the left  atrium and entering the left ventricle­ control blood flow from atriums to ventricle.   Semilunar Valves: o Pulmonary Valve: this is the valve the blood passes through as it is being pushed out of the right ventricle and into the pulmonary trunk (making its way to the lungs. Blood goes to lungs. o Aortic Valve: this is the valve that blood passes through as it is leaving the left  ventricle and entering the aorta (essentially making its way to the body). Sends  blood to body. LV to body.  7.     the path of blood flow through the heart  Deoxygenated blood from the superior vena cava(carries de­oxygenated blood to heart  from upper half of body)/inferior vena cava(carries deoxygenated blood from lower half of  body to the heart)➡coronary sinus drains blood from the heart wall into the➡ right atrium  ➡one­way blood flow passes through the tricuspid valve(Was tricuspid valve closes,  papillary muscles pull on chordae tendineae & prevent cusps from swinging back into  atrium) ➡enters the right ventricle ➡passes through the pulmonary semilunar valve ➡  enters the pulmonary trunk ➡right and left pulmonary arteries ➡lungs   Gas exchange occurs between blood in capillaries and air in the alveoli. (fresh oxygenated  blood) returns to heart➡Pulmonary veins(oxygenated blood from lungs to left atrium. 4  pulmonary veins.) ➡ Left atrium➡Bicuspid/mitral valve (prevents backflow of blood into LA  from LV during ventricular contraction­ A­V valves close) ➡Left ventricle➡Aorta  8.     control of valve function: functions to ensure one way flow­ prevents back flow   Papillary muscles and chordae tendinae prevent the cusps of the bicuspid valve from swinging back  into the LA during ventricular contraction.  9.     ECG waves discussed in class: waves, Records electrical changes in the myocardium P wave: represents atrial depolarization (muscles ready to contract)­­impulses spread into both  atria and right after the atria depolarize, they go into a state of systole (small contraction) (state of  contraction and increasing pressure)  it's a small contraction because most of the blood leaves the atria (70­80%) on its own only  a small amount of blood (20­30%) needs the help of a contraction to eject blood = small  contraction  QRS: results from ventricular depolarization (muscles ready to contract) of the ventricles­­it’s faster  contraction because of the ventricles pushing blood to the lungs/body(that is why they are so close  together) AV node = Q. Bundle Branches = R. Purkinje’s fibers = S.   it's a fast and strong contraction ( we need it to be strong as blood flow is fighting gravity) T wave: results from ventricular repolarization (relaxation of muscles) of the ventricles. Diastole. 10.     Terminology: bradycardia, tachycardia, arrhythmia, systole, diastole, cardiac cycle,  syncytium, stroke volume, cardiac output, blood pressure, pulse ­bradycardia: slow heart rate (< 60 BPM) ­tachycardia: rapid heart rate (>100 BPM) ­arrhythmia: irregular heart rate  ­systole: when a chamber is in a state of contraction, increasing pressure ­diastole: when a chamber is in a state of relaxation, decreasing pressure (Boyle’s law) ­cardiac cycle: one complete heartbeat, pressure increases (filling chamber) and decreases  (empty chamber) ­atrial syncytium: a group of fibers wrapped around the atrium ­stroke volume: amount of blood ejected from the left ventricle every beat (like a squeezing  sponge) ­cardiac output: heart rate x stroke volume (how much blood is pumped out every minute)  ­pulse: expansion and recoil of arteries from surge of blood. 11.     heart sounds ­lub­dub ­closing of valves make the sounds ** normal heart rate is 60­100 beat per  minute (BPM) ­lub: ventricular contraction (when AV valves are closing) ­dub: ventricular relaxation (when the pulmonary and aortic valves are closing) 12.     the cardiac conduction system­ initiates and distributes electrical impulses to the heart to  get it to start­ starts at SA Node (which is our pace maker­ in RA)­ it will depolarize (muscles ready  to contract) the atria and will go to AV Node­ in interatrial septum. Slows spread of impulses to  ventricles. Polarize slower than SA node. AV node is only normal conduction pathway between  atrial and ventricular syncytium.→ will depolarize and go to AV bundle­> bundle branch (left &  right)­­> goes deep in the myocardium are the purkinje’s fibers.  Junctional fibers­ conduct impulse into the AV node. Small diameters, so slow conduction. 1.­SA node 2.­AV node 3.­AV bundle/Bundle of His 4.­Bundle Branches 5.­Purkinje fibers 13.     the role of the autonomic nervous system in regulating the heart  ANS increasing heart rate:  o Cardio acceleration center will send an increased amount of SNS impulses to the SA node to get the heart to beat faster  o Simultaneously, the cardio inhibitory center will reduce the amount of PNS impulses  it is sending to the SA node (this allows for SNS to be dominant)   ANS decreasing heart rate: o Cardio inhibition system will send an increased amount of PNS impulses to the SA  node to get the heart to beat slower o Simultaneously, the cardio acceleration center will reduce the amount of SNS  impulses it is sending to the SA node (to allow for the Parasympathetic Nervous  System “PNS” to be dominant) 14.     regulation of cardiac output –  the ANS, Starling’s law   ­making sure body gets what it needs at right time. These all regulate and increase BP.  Autoregulation­ just what changes in a tissue.  Regulates­ 1)cardiac output: other (drugs/hormones, caffeine) HR: SNS, PNS. Starlings Law:  increase SV. 2) Peripheral resistance: Other, Vasomotor (BP), baroreceptors­ sends impulses to  vasomotor. [vasoconstriction and vasodilation] 3) BP Starlings Law: increase SV. (amount of blood ejected from left ventricle every beat). More blood in  heart, more blood out, more blood in, stretch myocardium. When myocardium stretches, it contracts  with more force. 15.     blood vessels – the pathway from ventricles to atria   Arteries­ 3 layers. away from heart. High pressure. Elastic. Smooth muscle.   Arterioles­ 2 layers. Fine branches, muscular capacity. Smooth muscle. Route blood  depending on demand. Vasoconstriction­ contracts/kinks, stop in blood flow. Low demand.  Vasodilation­ relax, high demand= high blood flow. High SNS= vasoconstriction/high  pressure/small space, low SNS vasodilation.   Capillaries­ 1 layer. Gas exchange. Smallest diameter blood vessels. Connect smallest  arterioles and smallest venules. High O  and nutrient.  2  Venules­ 2 layers. Small veins.   Veins­ 3 layers. Towards heart. Big space­low pressure. Valves= regulate flow and  distribute evenly. Prevent backflow.   *Meta Arterioles – inactive tissue. High ATP, low ADP, shortcut if no demand. Low blood, no gas exchange.  Changes in artery and arteriole diameters influence blood flow and BP.  16.      walls of arteries and veins   Arteries = endothelium, smooth muscle and connective tissue  Veins = endothelium, smooth muscle, and connective tissue 17.     autonomic regulation of blood vessel diameter/lumen size ­  18.     exchange at capillaries – osmosis, diffusion, filtration  Osmosis = diffusion of water  Diffusion = random movement of molecules from region of higher concentration toward one  of lower concentration  Filtration = movement of material across a membrane as a result of hydrostatic pressure 19.     veins – compare and contrast to arteries ; valves ­ both large, small, 3 layers, Contrast  Vein ­ low blood pressure, thin layers, valve (control flow) and Contrast Arteries ­ blood move fast,  away from heart, strong vessel carry blood away from ventricles under high pressure 20.     blood pressure – hypertension – definition, causes and treatments  1. Hypertension: define high blood pressure, causes cardiovascular disease, can be kidney  disease, high sodium intake, obesity, weight loss, yo­yo dieting and psychological stress,  treatment can be exercise 21.     regulation of blood pressure – cardiac output, Starling’s law ­Starling’s Law: the more blood pumped into the heart, the more blood pumped out of the  heart ­Cardiac Output: volume of blood pumped by heart per minute and function heart rate and   stroke volume. Blood Pressure= the force blood exerts against the inner walls of blood vessels.  Hypertension= high BP. Persistently elevated arterial pressure.  22. What vessels supply blood to the heart itself (the myocardium)?  Function of the coronary  arteries is to deliver oxygenated blood to the myocardium. 23. What vessels carry blood away from the heart itself (myocardium). ­­ Arteries.The aorta is the main artery that carries oxygen­rich blood from the left side of the heart to the body 24. What is arteriosclerosis?  the thickening and hardening of the walls of the arteries, occurring  typically in old age.Due to an excessive buildup of plaque around the artery wall. The  disease disrupts the flow of blood around the body, posing serious cardiovascular  complications. Ability to expand and contract changes with age.  Atherosclerosis­ Build up of fats, cholesterol, and other substances in and on the artery  walls. Causes obstruction in blood flow. Build up of plaque. High BP, low arterial diameter.  Milkshake in straw.  Functional syncytium­ mass of merging muscle fibers that act as a unit.  ­Atrial syncytium: mass of muscle fibers along atrial walls. ­Ventricular syncytium: mass of muscle fibers along the ventricular walls.  25. What are peripheral chemoreceptors? Where are they? What do they detect? s ensory  extensions of the peripheral nervous system into blood vessels where they detect changes  in chemical concentrations; increasing CO2 (decreasing O2) and decreasing pH Cardiac viens­ drain deoxygenated blood.  Read on your own (on cardiovascular system): 26.     adaptations of the system to exercise ­training intensity: determine individual’s maximum heart rate; most important factor in  maintaining cardiovascular fitness ­endurance training: increase in blood volume, expansion of plasma volume(increase in red  blood cells and hemoglobin) ­stroke volume greater at rest ­resting heart rate is lower following endurance training  ­maximun heart rate unchange or slightly decreased  ­cardiac output is greater following endurance training  ­VO2 max (max amount of oxygen) increases following endurance training  Extra Credit Readings: Atherosclerosis p.  365 Exercise and the CV system p. 372 The Respiratory System ­ For the exam, the student should know… 1.     The functions of the respiratory system ­Cells require oxygen to break down nutrients to release energy and produce ATP, and must  excrete the carbon dioxide that results.  ­Obtaining oxygen & removing CO2  ­­Gas exchange 2.     Respiration involves what events (4). ­Movement of air in & out of lungs (called breathing,ventilation) ­Gas exchange between blood & air in lungs (external respiration) ­Gas transport in blood between lungs & body cells ­Gas exchange between blood and body cells (internal respiration) 3.     The structures of the system as discussed in class and in your notes. ­­­­UPPER RESPIRATORY SYSTEM­­­ ­Nose: supported by bone & cartilage, nostrils: openings through which air can enter and leave the  nasal cavity. Internal nostril hairs prevent entry of large particles carried into the air ­Nasal cavity: is a hollow space behind the nose is lined with a mucous membrane containing  goblet cells­ secretes mucus that entraps dust. Nasal septum composed of bone & cartilage,  divides the nasal cavity into right & left parts.  ­Cilia: microscopic hair­like structures of the epithelial lining. As the cilia move, they push a thin  layer of mucus and entrapped particles toward the pharynx, where the mucus is swallowed. In the  stomach, gastric juice destroys microorganisms in the mucus. Paranasal Sinuses: are air­filled spaces within the frontal, ethmoid, sphenoid, and maxillary bones  of the skull that opens into the nasal cavity. They reduce the weight of the skull & are resonant  chambers that affect the quality of the voice.  ­Pharynx: is the throat, which is behind the oral cavity, the nasal cavity, & the larynx. It is the  passageway for food moving from the oral cavity to the esophagus and for air passing between the  nasal cavity and the larynx.  ­­­LOWER RESPIRATORY TRACT­­­ ­Larynx: cartilaginous structure connecting the pharynx and trachea at the cervical vertebrae.  Conducts air in & out of the trachea and prevents foreign objects from the trachea. Also houses the  vocal cords. It is composed of a framework of muscles and cartilages bound by elastic tissue (nine  pieces of cartilage arranged in a box­like formation: largest is thyroid cartilage (“Adam’s Apple”).  Vocal cords are folds of muscle and connective tissue w/ a mucous membrane covering. Sound is  made by air forced between the “true” vocal cords causing them to vibrate side to side,  generating sound waves.  The length of the cords determines pitch (women have shorter vocal  cords ­causing high pitches). “False” vocal chords­ muscle that are responsible for sealing the  glottis  during swallowing. GLOTTIS: triangular slit over trachea, when normal breathing, when not  swallowing food) ­Trachea: windpipe, flexible tube (4­5 inches long in midline of neck)extends downward anterior to  the esophagus & into the thoracic cavity, where it splits into right and left bronchi. Within the  trachea walls are 20 incomplete rings of hyaline cartilage “C” shaped; of the rings. Smooth muscle  & connective tissue fill the gaps between the ends of the rings.  The rings prevent the trachea from  collapsing and blocking the airway. Also, soft tissues that complete the rings in the back allow the  nearby esophagus to expand as food moves through to the stomach. ­Bronchial tree: consists of branched airways leading from the trachea to the microscopic air sacs  (alveoli) in the lungs. Branches begins w/the left & right primary bronchi which airs from the  trachea at the level of about the 5th thoracic vertebrae (bronchus). Each primary bronchus divides  into secondary bronchii, branches into finer and finer tubes. The bronchii become smaller &  smaller as they extend into lungs, and eventually the diameter is reduced to about one mm. At this  point there is no cartilage in the tubes. Among these smaller tubes are bronchioles that continue  to divide, giving rise to very thin tubes called alveolar ducts. These ducts terminated into groups of microscopic air sacs called alveoli, which lie within capillary nets. The branches of the bronchial  tree are air passages, whose mucous membranes filter incoming air and distribute the air to alveoli  throughout the lungs. The alveoli provide a large surface area of thin cells through which gas can  easily be exchanged. Oxygen diffuses through the alveolar walls & enters blood in nearby  capillaries & carbon dioxide diffuses from blood through the walls & enters the alveoli. An adult lung has ~300 million alveoli. LUNG: soft, spongy, cone­shaped organs in the thoracic cavity. Each lung occupies the majority of  the thoracic space on its side (relatively large). A bronchus and some large blood vessels suspend  each lung in the cavity. These structures enter the lung on its medial surface. Coverings: ­Visceral pleura: (inside wall): a layer of serous membrane­ attached to each lung surface & folds  back to become Parietal pleura ­Parietal pleura: (outside)forms part of the mediastinum and lines the inner wall of the thoracic  cavity. ­Pleural cavity (middle): potential space between visceral and parietal pleurae, no significant space  actually exists. Contains a thin film of serous fluid (consists of mostly water and enzymes) that  lubricates adjacent pleural surfaces, reducing friction as they move against one another during  breathing. This fluid also helps hold pleural membranes together by creating tension (surface  tension). 4.      The mechanism of breathing – how do inhalation and exhalation actually occur. You  must understand pressure gradients and how humans create those gradients responsible  for ventilation.  Breathing=Ventilation (movement of air from outside the body into and out of the bronchial &  alveoli). These actions producing these movements are termed inspiration (inhalation) and  expiration (exhalation). Exhale= abs and internal intercostals muscles. Inhale/inspirstion = active process = pectoralis minor, external intercostal muscles, diaphragm, and  sternocleidomastoid muscles.  ATMOSPHERIC PRESSURE ON SEA LEVEL:  760 MM HG ­Inspiration (inhalation)= AN ACTIVE PROCESS, air will enter the lungs if air in the alveoli has a  lower pressure than the air in the atmosphere. Air will leave the lungs if alveoli has a higher  pressure than the air in the atmosphere. In the process, the diaphragm contracts downward, rib  muscles pull upward (by external intercostal muscles)­­ this increases size of thoracic cavity and  decreases pressure (decreased pressure of alveoli) inside of lungs­­ as a result air rushes in and  fills lungs.  ­Surfactant: a mixture of lipoproteins synthesized by certain alveolar cells & is secreted  continuously into alveolar air spaces.  Function is to reduce surface tension & decrease the  alveoli’s tendency to collapse when lung volume is low. (Skeletal muscles that that changes pressure in lungs: pectoralis minor and sternocleidomastoid  external intercostal, and diaphragm.)c ­Inflation reflex: helps prevent over inflation of lungs. ­Expiration (exhalation): no muscular contraction, passive process, volume of thorax decreases,  resulting in decrease pressure in lungs. As the diaphragm and external intercostal muscle relax  following inspiration, the elastic tissues cause lungs and thoracic cage to recoil and return to  original shapes.  Diaphragm pushes downward and surface tension that develops between moist  surfaces of alveolar linings decreases the diameters of the alveoli but increases alveolar pressure  to 1 mm HG about atmospheric pressure (761mm HG, pressure of oxygen within mixture is 159mm HG).  (muscles that go inward: abdominal walls, internal intercostal muscles, ribs, sternum) 5.      The effect of altitude on breathing – the effects on the gradient for oxygen As elevation increases, partial pressure oxygen decreases in the atmospheric air and  & in the  alveoli resulting in less rapid diffusion of oxygen from the alveoli into the blood (decreased  saturation of hemoglobin with oxygen). Breathing becomes more labored as we attempt to make up for this decreased saturation. 6.      Respiratory air volumes and capacities­ are different intensities in breathing move  different volumes of air in or out of the lungs­ there are 4 distinct volumes: ­The amount of air that enters the lungs during inspirations (~500 mL at rest) is approximately the  same amount of air that leaves during a normal expiration. One inspiration plus the following  expiration is called a respiratory cycle.  ­Tidal volume: the volume of air that enters or leaves during a single respiratory cycle under resting  conditions and during a normal breath  ­Inspiratory reserve volume­ during forced inspiration, everything you take in addition to your  normal breathe. (extra volume of air) Expiratory reserve volume: biggest exhale on top of normal breathe. Residual volume: air that always remains in lungs after a normal expiration. This never changes  and is homeostatic so alveoli in lungs don’t collapse. This prevents oxygen and carbon dioxide  concentrations in the lungs from fluctuating greatly with each breathe.  RESPIRATORY CAPACITIES: Vital capacity: the largest volume of air that a person can exhale after taking the deepest breath  possible. This equals the inspiratory reserve volume (3000 mL)  plus the tidal volume (500ML), and  the expiratory reserve volume (1100ML).  7.      Gas exchange at the respiratory membrane:  a.  What is the respiratory membrane? The walls of the alveolus and the capillary.  b.  Which direction does diffusion of each gas occur and why? For gases­diffusion occurs  from regions of higher pressure toward regions of lower pressure. The pressure of a gas  determines the rate at which it diffuses from one region to another. 8.      Partial pressures Ordinary air: 78% nitrogen, 21% oxygen, 04% of carbon dioxide, small amounts of other gases with little or no physiological importance.  ­In a mixture of gases, each gas accounts for a portion for the total pressure gas contributes.  ­Partial Pressure: The amount of pressure each gas contributes is directly proportional to the  concentration of the gas in the mixture. The higher the concentration of a particular gas in a  mixture, the higher the partial pressure of that gas.  Air is 21% oxygen: this gas accounts for 21% of the atmospheric pressure (760 mm HG) 21% (OXYGEN) of 760 mm Hg= 160 mmHG. Thus PO2 is atmospheric air is 160 mm HG (partial  pressure=Pgas) ­PCO2* in air (CARBON DIOXIDE)= .3mmHg (.04% of 760=.0004x760) 9.      How both oxygen and carbon dioxide are picked up and delivered in the body a.  Oxyhemoglobin: majority of our oxygen is transported through this. ­more oxygen is released as blood concentration of CO2 increases (H+  increases) ­more oxygen released as blood becomes more acidic ­more oxygen released as blood temperature increases ­plasma 2%, oxyhemoglobin 98% = oxygen b.  Carbaminohemoglobin ­23% carbaminohemoglobin, 7% plasma ­regions of low pCO2  c.  Bicarbonate ion: 70% of CO2= bicarbonate ion , carbominohemoglobin,  plasma. (blood transports carbon dioxide to lungs) ­most common way to transport CO2 ­formed after CO2 enters blood plasma at the tissues and combines w/ water d.  Plasma: ­7% of CO2  ­2% of O2   10.     The control of respiration by the autonomic nervous system A. The respiratory center (found in the medulla oblongata, it is part of the control center)  Ventral Respiratory Group: Responsible for setting the normal rhythm of our  breathing o Sends out 12­15 impulses/cycles per minute (this is our normal/resting rate) to the diaphragm  o It is always active (VRG)  Dorsal Respiratory group (DRG): triggers changes in our breathing  Only change when breathing is forceful.  o Helps us take deep forceful breaths o Sends impulses to diaphragm and other muscles  o Only active when our breathing is different from the norm (12­15 cycles)   Pontine group or pneumotaxic group (inhibits VRG/DRG) o Can strongly inhibit both VRG and DRG  Cuts off the impulses early thus shortening our inhales   If weak, longer and slower impulse.   If strong, cuts off early.   This happens when demand is high because we need faster shorter  breaths  Can weakly inhibit both VRG and DRG   Our breaths are longer (less per minute)  Our length of inhale stretches out  When demand is low (sleeping) as we need shorter/longer and  deeper breaths b.  Chemoreceptor and baroreceptor reflexes – where are they located and what are each sensitive to?  Chemoreceptors: detect changes of chemicals throughout the body o Central chemoreceptors:   Located in the medulla oblongata near the respiratory center     Detect change in chemicals   In brain­ sensitive to changes in CO2 and Hydrogen.   Sense change in CSF.   Peripheral chemoreceptors:   Located in the carotid arteries (specifically in the carotid body) and the aortic  arch (specifically the aortic body)  Sensitive to low levels of pO2­ oxygen.   Oxygen plays a minor role in controlling normal respiration.   Baroreceptors:   Located in the carotid arteries and the aortic arch  Sensitive to changes in blood pressure c.  Inflation reflexes (inhalation and exhalation) ­regulation of depth of breathing ­prevents overinflation of lungs during forceful breathing


Buy Material

Are you sure you want to buy this material for

50 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Allison Fischer University of Alabama

"I signed up to be an Elite Notetaker with 2 of my sorority sisters this semester. We just posted our notes weekly and were each making over $600 per month. I LOVE StudySoup!"

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Parker Thompson 500 Startups

"It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.