New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Exam One Study Guide

by: Jordyn DeBraal

Exam One Study Guide Bio 402

Jordyn DeBraal

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

This covers the weekly goals provided by Professor Hanke.
Human Physiology
Dr. Hanke
Study Guide
Human, Physiology
50 ?




Popular in Human Physiology

Popular in Physiology

This 10 page Study Guide was uploaded by Jordyn DeBraal on Thursday October 6, 2016. The Study Guide belongs to Bio 402 at University of Wisconsin Green Bay taught by Dr. Hanke in Fall 2016. Since its upload, it has received 40 views. For similar materials see Human Physiology in Physiology at University of Wisconsin Green Bay.


Reviews for Exam One Study Guide


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 10/06/16
Week One Goals Be able to identify the four types of tissue and provide examples of representative tissues  in each tissue type.   Muscle: Generates force, skeletal and muscle tissue. Epithelial: Barrier layer, skin and  epithelial tissue. Nerve: Communication, neurons. Connective: Connect and anchor, bone and blood cells. Understand the distribution of water throughout the body. Intracellular (2/3 body H2O)­ Extracellular (1/3 body H2O)­ Interstital fluid ­ Plasma <­­­­­Nutrients Waste­­­­> Understand the importance of hydrogen bonding in water and the difference between  polar and nonpolar compounds. Understand the difference between hydrophilic and  hydrophobic compounds. Hydrogen bonding: Polar= two different ends (+, ­), good solvent for charged molecules,  poor solvent for non­charged molecules, disassociates into H and OH, high degree of  hydrogen bonding.  Polar= charged, lipophobic, hydrophilic Non­polar= Non­charged, lipophilic, hydrophobic Understand the levels of protein folding, the factors determining the shape of a protein  and the importance of protein shape in determining function.   Primary= order of amino acids, Secondary= alpha helix and beta sheet connected through loop conformation, Tertiary=fully folded form, globular, fully functional,  Quantenary=multiple protein subunits complied together. Shape determined by folding pattern, hydrogen bonding with side chains, covalent  linking with side chains, ionic bonding with side chains, Van der Waal  forces=hydrophobic regions, denaturing agents disrupt protein structure. Be able to explain terms such as specificity, affinity and saturation as they refer to the  binding of a ligand.  Specificity= the ability of a binding side to differentiate between similar shaped ligands. Affinity= tightness of binding. Saturation= fraction of total binding sites occupied at any given time. Week Two Goals Understand the differences between allosteric and covalent modulation of protein  function and the difference between the regulatory and functional sites of a protein.  Understand the mechanisms for adding or removing phosphate groups in covalent  modulations. Allosteric= 2 binding sites, a modulator molecule will bind to the regulatory site­this  twists the shape of the protein, allowing a ligand to bind to the active site. Covalent= 1 binding site, site of phosphorylation (add phosphate using kinase enzyme),  phosphate’s negative charge twists protein, phosphatase removes phosphate, allows us to  turn on and off enzymes/receptors. Be familiar with the process of enzyme­catalyzed reactions.  Number of product molecules/unit of time. Influenced by reactant concentration, energy  of activation, pH, temperature, and presence of a catalyst. Enzymes help hold substrates  together. Homeostasis allows enzyme reactions to be predictable.  Understand the factors controlling the rate of a reaction and the ways in which these  reaction rates may be altered.   Enzyme Concentration= enzyme synthesis or enzyme breakdown Enzyme Activity= allosteric/covalent inhibition or activation (Changing rates depends on environmental demands) Be able to recognize multienzyme pathways and understand the regulation of these  pathways by end product inhibition. If too much of a molecule is being produced, negative feedback occurs on one of the  enzymes (rate limiting enzyme) to limit production. This maintains homeostasis.  Understand the purpose to cell signal transduction, the difference between intracellular  and cell surface receptors and be able to identify the cell permeability of the molecules  that use each of these pathways. Outer binding region will bind a specific ligand.  Inner signaling region will inhibit or  activate intracellular pathway. Agonists will bind receptor and activate transduction  pathway. Antagonists will bind receptor, but will not activate transduction. Testosterone, progesterone, and aldosterone have lipophilic properties that allow them to  move across the membrane. Understand the process of activation of intracellular receptors by cell membrane  permeable agonists.  Understand that intracellular receptors act as transcription factors to  interact with DNA and regulate protein synthesis inside the cell. 1) Bind to lipophilic agonists (trigger cellular response) 2) Located in cytoplasm on nucleus 3) Receptor and agonist binds DNA 4) Control transcription­protein synthesis Be able to describe the structures and individual steps involved in activating a G protein.   Understand the effect of GDP and GTP binding on the alpha subunit and why it is  important for the alpha subunit to metabolize GTP.   1) Ligand binds receptor 2) Receptor binds G protein 3) G protein releases GDP and binds GTP (active) 4) G protein binds “effector” enzyme­ activates 5) Inactivation­ G protein alpha subunit releases GTP and binds GDP once more.  Alpha subunit then binds back with beta and gamma. 6) Back to step one. Understand the way in which amplification occurs in this type of signaling.  1 molecule will result in the release of 10,000 molecules because we have a cascade of  enzymes being activated (often kinase) Be familiar with the adenylyl cyclase pathway, the activation of kinase enzymes and the  function of phosphodiesterase enzymes.   Understand the enzyme and substrate involved  in inositol triphosphate and DAG generation and the roles of these second messenger  molecules in stimulating protein kinases and intracellular calcium release.   Adenylyl cyclase is activated or inhibited by G proteins. Substrate ATP is converted into  cyclic AMP (2  messenger)P Kinase A (inactive)Protein Kinase A (active)protein or protein­p Degradation of cAMP by phosphodiesterase (off switch) C protein activated phospholizpase C; phospholipids are substrate Substrate PIP2 is converted into IP3, which travels to the endoplasmic reticulum and  increases calcium. DAG activates pKc, results in protein or protein­p. Be familiar with the activation of the phospholipase A pathway, the generation of the  prostaglandins and the function of aspirin. Pain is induced by the hormone prostaglandin. When someone takes aspirin, it will  inhibit the synthesis of prostaglandin. If someone has recently taken aspirin they will have a normal concentration of  arachidonic acid, but a decrease in both prostaglandin and thromboxane concentrations. Understand the interaction between calcium, calmodulin and protein kinases.   Can be extracellular through channels, can be intracellular through endo or sarcoplasmic  reticulum. Ca binds calmodulin­ changes shape. Ca/calmodulin activates kinases (cAMP) Be familiar with the general mechanisms of the tyrosine kinases and JAK kinases.  Be  able to describe the signaling pathway used by nitric oxide in the production of cGMP. Tyrosine Kinase- dimers associate in presence of agonist Phosphonylates tyrosine- amino acid on target proteins JAK Kinase= cell growth/proliferation Nitric oxide activates soluble guanylyl cyclase. GTP becomes cGMPcGMP dependent protein kinase pKap-proteindecrease in calcium. Week Three Goals Understand the factors controlling diffusion rate through liquids and a semipermeable  membrane.  Understand the importance of maintaining small cell size in terms of  diffusion constraints.   Diffusion down a concentration and charge gradient (from high to low concentration),  membrane permeability (Kp) increases with increasing hydrophobicity (fats diffuse easily across membranes, ions do not), diffusion rate increases with surface area. Cells travel a  long distance, so the smaller they are the easier they will be diffused. Be familiar with the equation describing net flux through a lipid membrane. F (flux)= Kp x A(Co­Ci) Co=outside concentration and Ci= inside concentration Understand the difference between simple diffusion, facilitated diffusion, primary active  transport and secondary active transport.   Simple= high to low concentration, no outside energy required, no transport protein  needed, hydrophobic. Facilitated= high to low concentration, no outside energy required, transport protein  needed, hydrophilic. Active= low to high concentration, transport protein needed, energy required (ATP),  hydrophilic. Primary Active Transport= 3 Na molecules bind to inside of pump. Use ATP to  phosphorylate pump. Protein pump flips. Na is released; K molecule binds to outside of  pump. Dephosphorylation, Protein pump flips back. Secondary Active Transport= No ATP binding directly to protein pump. Utilizes an  existing concentration gradient as energy source (Na). Na flows down concentration  gradient, glucose pumps up concentration gradient. Countertransport= move in opposite  direction. Cotransport= move in same direction. Understand the uses of endocytosis and exocytosis.  Endocytosis is vesicle formation.  Cell Eatingphagocytosis=drawing inward, process of  using cell membrane to engulf large particles.  Cell Drinkingpinocytosis=large volume  of fluid drawn inward. Exocytosis= Release of vesicle contents to outside, very common to be used for  neurotransmitters, always triggered by an increase in CaH. Be able to identify molecules that can and cannot pass freely through the cell membrane.  Lipophilic, non­charged, small ions CAN Hydrophilic, charged, large ions CANNOT Understand the basic protein structure of ion channels and the use of pore size and charge filters in the selection of permeable ions.  Amino acids in middle are not charged (hydrophobic) Transmembrane proteins compose subunits May be one continuous protein Multiple subunits may come together (multimeric) Gated by voltage, ligand, or stretch Understand the process of osmosis and the generation of osmotic pressure within a cell.   Be able to describe what is meant by hypertonic, hypotonic and isotonic solutions. Osmosis= equilibrium will be established when enough water flows across membrane to  cause equal concentration of H2O on both sides. Hypertonic= too much (more dissolved solute than physiologic solution) Isotonic= appropriate balance (equal concentration of dissolved solute) Hypotonic= too little (less dissolved solute than physiologic solution H2O concentration is high in hypotonic and low in hypertonic Understand the factors contributing to the development of the resting membrane  potential.   Measured as a voltage, ohm’s law V=IR, inside is negative, ­70mv is normal resting  potential. Be able to identify the proper concentrations of major ions on either side of the cell  membrane.   Na is 150 extracellular and 15 intracellular Cl is 110 extracellular and 10 intracellular K is 5 extracellular and 140 intracellular Understand the meaning of the equilibrium potential and the use of the Nernst equation.   Equilibrium potential is a balance between charge state and concentration gradient for a  single ion. Nernst equation expresses the relationship between concentration gradient and charge for  an ion on either side of cell membrane E=60log(Co/Ci) Be able to apply concentrations of ions and channel permeability factors to the Goldman  equation to calculate membrane potentials.   Goldman equation accounts for multiple ions and permeability. Understand the concepts of polarization, depolarization, repolarization and  hyperpolarization and the ion channels involved in each of these responses. Depolarization=movement upward or toward zero (Na, Ca) Repolarization= movement downward or toward ­70 (K, Cl) Hyperpolarization= excessive negative charge (k, Cl) Be able to describe the cellular anatomy of the neuron.  Understand how the structural  organization of the neuron relates to function in the transfer of information. Understand  the fundamental difference between information received by the dendrites and  information transmitted through the axon.  Info travels from presynaptic to postsynaptic neurons Vesicles which contain neurotransmitter located in axon terminals Axon Hillock is the decision centerneuron decides if it should fire an action potential Axon transmits info to the next neuron in chain Myelin Sheath speeds up production. Gaps between sheath are nodes or ranvier= booster  stations Dendrites/cell body receive incoming info from an axon hillock of an upstream neuron  with neurotransmitters being released  ­integrate (compare from multiple sources upstream) Understand the process of generating excitatory or inhibitory postsynaptic potentials  (EPSP or IPSP).   If causing depolarization=excitatory post synaptic potentials (Na, Ca) If causing hyperpolarization=inhibitory post synaptic potential (K, Cl) Be able to distinguish between spatial and temporal summation processes. Temporal= multiple repeated firing of a single synapse­potential EPSPs or IPSPs will  summate (additive) Spatial= 2 or more synapses firing simultaneously Week Four Goals Understand the divisions of the nervous system into central and peripheral, somatic and  autonomic, sympathetic and parasympathetic. Be able to distinguish between the  functions of afferent and efferent neurons.     CNS=Composed of brain and spinal cord. Gray matter (non­myelinated) and white matter (myelinated). Corpus Callosum connects left and right hemispheres. Dorsal and Ventral  roots from spinal cord­dorsal afferents and ventral efferents. Join to form spinal nerves. PNS=Somatic. Automomic divided into sympathetic or parasympathetic.  Sympathetic=norepinephrine (adrenaline), adrenergic receptors (alpha and beta) Parasympathetic=acetylcholine, cholinergic receptors (muscarinic) Be able to identify organ responses to sympathetic and parasympathetic stimulation.   Heart: sympathetic response=increase heart rate, contract strength, B1 receptors.  parasympathetic= decrease heart rate. Lungs: Sympathetic response=bronchodilation, B2 receptor.  Parasympathetic=bronchoconstriction, increase mucus production. Gut: sympathetic response= decrease peristalsis, decrease secretion. Parasympathetic=  increase peristalsis, increase secretion. Pupil: sympathetic=dilation, parasympathetic=constriction Recognize the glial cell types associated with the central nervous system and the  peripheral nervous system.  Oligodendroglial cell=form myelin sheath in CNS Schwann Cell=form myelin sheath in PNS Astrocyte=store nutrients, ion balance Microglia=immune system within the nervous system Understand the process of development of the action potential and the types of ion  channels involved in each portion of the potential.   Membrane potential must reach threshold Activates voltage gated ion channels (usually Na) All or none­all channels open­positive feedback Directional due to refactory period Understand the function of myelin in speeding up transmission of the action potential and the role of the nodes of Ranvier in this process.   Increase speed by decreasing need to open as many channels Decreases membrane charge leak and membrane capacitance Does NOT change cytoplasmic resistance Nodes of Ranvier=booster stations Be familiar with the concepts of cytoplasmic resistance, capacitance and charge leak and  how the action potential is affected.   Cytoplasmic resistance=impulse will fade as it travels Decay is also due to leakage of charge—charge loss due to leakage, decrease signal  strength Capacitance= charges align on either side of thin cell membrane, produces a capacitor,  early portion of depolarization is absorbed until cell capacitance is fully charge, decrease  signal strength (some Na are lost). Understand the concept of threshold of activation, the spontaneous inactivation of the  sodium ion channel and the differences between the absolute and relative refractory  periods. Threshold of activation=EPSPs that are less than threshold—no action potential  generated Once threshold reached—action potential is an all or none phenomenon Voltage gated Na channels open quickly and close quickly  Voltage gated K open slower so K can flow out. Absolute refactory=Cants be opened by voltage Relative refactory=stronger than normal stimulus required (threshold is higher than  normal) Be familiar with the primary classes of neurotransmitters and the enzymes responsible for the degradation of acetylcholine.   Acetylcholine­important in skeletal muscle, primary contributor to parasympathetic  nervous system, degradation is acetylcholinesterase (enzyme) Norepinephrine, epinephrine­sympathetic nervous system Serotonin­controls sleep, appetite, mood Amino Acids­glutamate (escitatory), GABA (inhibitory) Neuropeptides­endorphines Miscellaneous­nitric oxide Understand the four factors involved in the termination of synaptic activity.   1) Diffuse away from synaptic cleft 2) Reuptake of neurotransmitter, store NT in vesicles 3) Degradation of enzymes; acetylcholinesterase 4) Auto receptor (located on presynaptic neuron)­binding of NT prevents further NT  release. Understand the differences between nicotinic cholinergic receptors and muscarinic  cholinergic receptors.   Muscarinic=G protein coupled receptors, parasympathetic Nicotinic=Ligand gated ion channels­mediate a fast synaptic transmission of  neurotransmitter, sympathetic Understand the importance of voltage operated calcium channels in the release of  neurotransmitters from the synaptic bouton. Exocytosis from presynaptic neuron  Must increase Ca inside cell Incoming action potential now switches to a voltage gated Ca channel Ca binds to Ca sensitive protein which are coupled to the vesicles holding onto  neurotransmitters Synaptotagin (protein), SNAREs=pull vesicle to membrane and trigger release Position of synapse important, change fades as it travels. Be able to identify anatomical features of the spinal cord and brain as discussed in class.   Understand the basic functions of the cerebrum, thalamus, hypothalamus,  corpus  callosum, choroid plexus, cerebellum, limbic system and brain stem.   Cerebrum= sensory processing, association­integration, memory formation and learning,  4 lobes, 2 hemispheres, left side=data, right=visual Cerebellum= timing of muscle firing, postural adjustment, motor memory formation Brainstem= involuntary muscle control, alertness, reticular activating system (startle) Thalamus=routing of sensory info Hypothalamus=homeostasis, endocrine control Limbic System=allows direct connections of various brain regions, learning, emotion,  endocrine control through hypothalamus. Corpus Callosum=connects the two hemispheres Choroid Plexus=produces cerebrospinal fluid in ventricles Be able to explain the effects and drug treatments of common neurological diseases such  as epilepsy, alzheimer's disease, cerebral palsy and depression. Epilepsy= uncontrolled firing of multiple brain regions, kindling. Treatment— benzodiazepines, which increase GABA receptors, activates Cl channels to open Alzheimer’s Disease= acetylcholinesterase inhibitor­donepezil­increases activity at  cholinergic synapse (increase likelihood of firing) Depression=SSRI’s increases serotonic concentrations in synapse Cerebral Palsy=anticholinergics­prevent acetylcholine from binding ­ treats shaking,  uncontrolled body movements, muscle stiffness


Buy Material

Are you sure you want to buy this material for

50 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Janice Dongeun University of Washington

"I used the money I made selling my notes & study guides to pay for spring break in Olympia, Washington...which was Sweet!"

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Parker Thompson 500 Startups

"It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.