×

### Let's log you in.

or

Don't have a StudySoup account? Create one here!

×

or

## MATH 200 Midterm Study Guide

by: spencer.kociba

40

0

6

# MATH 200 Midterm Study Guide Math 200

Marketplace > Drexel University > Math > Math 200 > MATH 200 Midterm Study Guide
spencer.kociba
Drexel

Get a free preview of these Notes, just enter your email below.

×
Unlock Preview

Chapter 11.1-11.6, 12.1-12.2 concepts, formulas and properties to review for the first midterm on 10/19
COURSE
Multivariate Calculus
PROF.
TYPE
Study Guide
PAGES
6
WORDS
CONCEPTS
Calculus, vectors, vector calculus, multivariable calculus, parametric equations, planes, skew lines, Derivatives
KARMA
50 ?

## Popular in Math

This 6 page Study Guide was uploaded by spencer.kociba on Sunday October 16, 2016. The Study Guide belongs to Math 200 at Drexel University taught by in Summer 2016. Since its upload, it has received 40 views. For similar materials see Multivariate Calculus in Math at Drexel University.

×

## Reviews for MATH 200 Midterm Study Guide

×

×

### What is Karma?

#### You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 10/16/16
Spencer Kociba MATH 200­005  MIDTERM 1 EXAM REVIEW GUIDE ***Things that WILL be on the test: ○ 11.1: Rectangular coordinates in 3­space, spheres, cylindrical  surfaces ○ 11.2: Vectors ○ 11.3: Dot Products and Projections ○ 11.4: Cross Products ○ 11.5: Parametric Equations for lines ○ 11.6: Planes in 3­space ○ 12.1: Intro to Vector Valued Functions ○ 12.2: Calculus of Vector Valued Functions ○ ***All homework worksheets THROUGH Vector Valued  Functions EXCEPT Quadratic Surfaces ● Section 11.1 ○   = 3­space (or R3)  ■ “Floor” = xy­plane ■ “Right wall” = yz­plane ■ “Left wall” = xz­plane ■ “Inside the room” = the first octant ○ distance=  d= ❑√ ○ ○ Formula for a sphere= r =(x❑ −❑)❑ +(y❑ −b)❑ ❑(z❑ −c)❑ ❑ 2 where the center is C(a,b,c) and the distance from any point on the surface to the center=r ○ Cylindrical surface: a graph (in 3 space) of an equation with 2  variables projected along a 3rd variable’s axis ■ Ex.  ○ Midpoint between  A(x❑ ,1❑ ,z❑1) 1  and B(x❑ ,y❑ , z❑ ) 2 2 2  is  ● Section 11.2 ○ Vector= direction and magnitude ■ Ex. angle and displacement ■ ● Name: vector “v” or  vector AB  (which is not equal to vector BA) ● A=initial point ● B=terminal point ● Scalar= any real number ○ v=u if direction and magnitude are the same ■ Position is NOT important ○ (scalar)(v) multiplies the elements of v by the scalar value ■ (stretches or shrinks the vector or changes its  direction by 180 degrees) ○ Notation ■ ||v||= the magnitude of v (aka the length/norm of v) ■ ( ) = a point ■ < > = a vector ○ Unit vector: ||v||=1 ■ u= 1 ∗v   (reciprocal of the norm of  ¿∨v∨¿ v (results in scalar) multiplied by v) ■ 2 space unit vectors: i=<1,0> and j=<0,1> ■ 3 space unit vectors: i=<1,0,0> ; j=<0,1,0> and  k=<0,0,1> ○ v=¿∨v∨¿⋅<cosθ,sinθ>¿ ○ Resultant Force: 2 forces applied on a same point on an object ■ If F1 and F2 have the same initial point, F1+F2= resultant force ■ ● F 1=¿∨F 1∨¿⋅<cosA,sinA>¿ ● F 2=¿∨F 2∨¿⋅<cosB,sinB ● F3 is usually given= <0, ­Fg> ● F1+F2+F3=0 (static equilibrium) ○ Solve for forces of tension (||F1||, ||F2||) ● Section 11.3 ○ Direction cosines ■ cos(α)= v❑ 1 ¿∨v∨¿ ■ cos(β)= v❑ 2 ¿∨v∨¿ v❑ 3 ■ cos(Ɣ)= ¿∨v∨¿   ○ Angle between vectors u∙v ■ cos(θ)= ¿∨u∨¿∨¿v∨¿ ○ Law of cosines (for vectors): 2 2 2 ¿∨u−v∨¿ =¿∨u∨¿ +¿∨v∨¿ −2∨¿u∨¿∨¿v∨¿cos(θ) ■ ○ Dot product in 2 space=  u❑ 1❑ +1❑ v❑2 2 ■ If  u∙v=0 , u and v are perpendicular v∙b ○ proj❑b(v)=¿ 2⋅b ¿∨b∨¿ ■ ■ v=proj❑ (b)+(v−proj❑ (b)) ● Components ○ ■ F ❑ 1k❑ e1 1 where k is a scalar ■ F ❑ =k❑ e❑ where k is a scalar 2 2 2 ■ Fg=k❑ e1 +1❑ e❑2 2 ■ Fg∙e❑ 1k❑ 1 ■ Fg∙e❑ 2k❑ 2 ■ Fg=(Fg∙e❑ )1❑ +1Fg∙e❑ )e2 2 ○ To find orthogonal vectors to two given vectors v and u, ■ u∙w=0 ■ v∙ w=0 ■ This sets up an undetermined system  where 1 variable can be any non­zero and real number ● Section 11.4 e f d f d e |g h| | | |g i g h ○ = a ­b +c ○ Properties of cross products ■ (i) u x v = ­(v x u) ■ (ii) u x (v+w) = u x v + u x w ■ (iii) (u+v) x w = u x w + v x w ■ (iv) k(u x v) = (ku) x v = u x (kv) ■ (v) u x 0 = 0 ■ (vi) u x u = 0 ■ Unit vectors: i x j=k, j x k=i, k x i=j ○ ■ (i)  u∙(uxv)=0 ■ (ii) v∙(uxv)=0 ○ Use dot products to PROVE two vectors are orthogonal,  find projections and angles between vectors ○ Use cross products to find an orthogonal vector ○ Parallelepiped ■ ¿∨uxv∨¿=¿∨u∨¿⋅∨¿v∨¿⋅sin(θ) ■ A=¿∨u∨¿⋅∨¿v∨¿⋅sin(θ) ■ V= |u∙(vxw)| ● V=0 if u,v, and w lie in the  same plane ● Absolute value of Scalar Triple Product ( ) is the Volume of the  parallelepiped ● Section 11.5 ○ Theorem: the line (in 2­space) through the point P(x,y) parallel  to v=<a,b> has parametric equations x=x+at, y=y+bt ■ In 3­space with P(x,y,z) and v=<a,b,c> the  parametric equations are  x=x+at, y=y+bt and z=z+ct ○ Two lines that do not intersect and are not parallel are skew  lines ○ r(t)= ¿x❑ +ot ,y❑ +bo ,z❑ +co>¿ ● Section 11.6 ○ n=the normal line (perpendicular to the plane) ○ Acute Angle between planes ¿ ¿n❑ ∙1❑ ∨ 2 ■ ¿∨n❑ ∨1⋅∨¿n❑ ∨¿ 2 cosθ=¿ ○ Line of intersection between planes ■ n❑ 1n❑ 2 ○ To make an equation for a plane you need ■ A point and a vector or ■ 2 points on the plane or ■ 2 vectors on a plane or ■ 3 points on a plane or ■ A point and a vector/line on a plane  ○ Equation for a plane ■ ax+by+cz+d=0 ● Where d= −ax❑ −oy❑ −cz❑o o ■ a(x−x❑ )+o(y−y❑ )+c(zoz❑ )=0 o ○ Planes are parallel if they are scalar multiples of eachother or v x n =0 ○ Planes are perpendicular if  v∙n=0 ○ If planes are NOT parallel, they MUST intersect at some line ● Section 12.1 ○ Vector valued function: a function where the input is a number  and the output is a vector ○ Domains of VVF are all possible values of t ■ Keep in mind any pre­existing restrictions  before finding the domain of the derivative of the function ■ r’(t) domain should be within r(t) domain ○ Be aware of under and overdetermined systems ○ VVF form ■ r(t)=<f(t), g(t), h(t)> where f, g and h are real  valued functions ● Section 12.2 ○ Continuity definition ■ We say a VVF r(t) is continuous at “a” if lim r(t)=r(a) t→a ○ Derivative definition ■ If r(t) is a VVF, we define the derivative of r with  lim r(t+h)−r(h) respect to t to be the VVF r’ given br'(t)=h→ 0 h ● The domain of r’ is all values of t  for which this limit exists d dr ■ r'(t)=dt [r(t)]=dt ● r’(t)=vector ■ If r(t)=<x(t),y(t),z(t)> then r’(t)=<x’(t),y’(t),z’(t)> ■ Results in the “tangent vector” ○ Properties ■ All the same as regular derivatives except the  multiplication rule ● d [ f (t)r(t)]= [ f (t)]⋅r(t)+ [r(t)]⋅ f (t) dt dt dt ○ Theorem: if r and s are VVfs  ■ d [r(t)∙s(t)]= d [r(t)]∙s(t)+r(t)∙d [s(t)] dt dt dt ● r∙s turns into a real valued  function ■ d d d [r(t)xs(t)]= [r(t)]xs(t)+r(t)∙ [s(t)] dt dt dt ● Derivatives go on the outside,  VVFs go on the inside ○ Integrate each element of r(t) separately and add C= ¿C❑ ,1❑ ,C❑2>¿ 3

×

×

### BOOM! Enjoy Your Free Notes!

×

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

## Why people love StudySoup

Steve Martinelli UC Los Angeles

#### "There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Allison Fischer University of Alabama

#### "I signed up to be an Elite Notetaker with 2 of my sorority sisters this semester. We just posted our notes weekly and were each making over \$600 per month. I LOVE StudySoup!"

Bentley McCaw University of Florida

#### "I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"

Parker Thompson 500 Startups

#### "It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

Become an Elite Notetaker and start selling your notes online!
×

### Refund Policy

#### STUDYSOUP CANCELLATION POLICY

All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email support@studysoup.com

#### STUDYSOUP REFUND POLICY

StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here: support@studysoup.com

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to support@studysoup.com