Limited time offer 20% OFF StudySoup Subscription details

Towson - MBBB 309 - Exam III Study Guide - Study Guide

Created by: Katlyn Burkitt Elite Notetaker

> > > > Towson - MBBB 309 - Exam III Study Guide - Study Guide

Towson - MBBB 309 - Exam III Study Guide - Study Guide

0 5 3 1 Review
This preview shows pages 1 - 3 of a 10 page document. to view the rest of the content
background image Genetics Exam III Study Guide 
 
Chapter 13—Mutation, DNA Repair, and Recombination 
  Point mutations vs. Frameshift mutations  o  Point Mutation: Only affects one or very few nucleotides, typically changes  one nucleotide for another   o  Frameshift Mutation: Changes the “frame” in which the template strand is  read. Is caused by Indels (Insertions or deletions) of a pair of nucleotides  o  Therefore, the differences between the two are that point mutations only  affect one nucleotide and frameshift mutations affect more than one 
nucleotide and how the entire code is read.  
  Somatic vs. Germline mutations  o  Somatic Mutations: Mutation in a non-germline cell that can be passed to  the progeny through cell division  o  Germline Mutations: Inherited genetic mutations in the sex cells 
o  Therefore, the primary difference between the two is the cells in which they 
occur      Spontaneous vs. Induced mutations  o  Spontaneous: Occurs without a known cause  
o  Induced: Mutation that occurs due to exposure to a chemical or physical 
agent that causes changes in the structure of DNA     Transition vs. Transversion  o  Transition: Changes a Purine to a Purine (A  G) or a pyrimidine to a  pyrimidine (CT)  o  Transversion: Changes a Purine to a Pyrimidine or vice versa  
o  Purine: Two ring nucleotide  
o  Pyrimidine: One ring nucleotide 
  Mutation via Base Analogs (e.g. 5-bromouracil)  o  Inducible mutation 
o  Base analog: Unnatural purine or pyrimidine bases that differ slightly from 
the normal bases and that can be incorporated into nucleic acids   o  5-Bromouracil    A pyrimidine     Thymine analog     Bromine at the 5 th  position is similar to the methyl (-CH ) group in  thymine    Changes the charge distribution and increases the frequency of  tautomeric shifts     In stable Keto form in bonds with adenine    After a tautomeric shift to its enol form it bonds with guanine 
  In keto form, it causes a G:C  A: T transition 
  In enol form it causes an A: T  G:C transition    Mutations induced by radiation (e.g. thymine dimmers) and superoxides  o  Ionizing Radiation: X-Rays, gamma rays, and cosmic rays     High energy  
background image   Used for medical diagnoses and penetrate living tissue through  substantial distances    Cause ionization measured in roentgen units     Can cause mutation  o  Non-ionizing radiation: Ultraviolet light     Low energy 
  Penetrate only surface cell 
  Do not cause ionization but excitation or the movement of electrons in  outer orbitals to higher energy levels     More likely to cause mutation in single cellular organisms   o  Cells either ionized or excited are more chemically reactive than their normal  forms  o  These mutations can cause cancer    Ames Test  o  Pages 346 – 348  
o  Carcinogens: Mutagenic substances that induce cancer in living cells  
o  It essentially provides a simple and inexpensive method for detecting the 
mutagenicity of chemicals   o  Step 1: Grow Salmonella his -  auxotroph’s carrying a frameshift mutation   o  Step 2: Prepare a solution of the potential mutagen  
o  Step 3: Spread bacteria on agar medium containing a trace of histidine (plates 
skips steps 4 and 5 acting as the control)  o  Step 4: Place a solution containing potential mutagen on filter paper disk  
o  Step 5: Place disk with potential mutagen in experimental plate 
o  Step 6: Incubate at 37degrees Celsius 
  Repair Mechanisms (Pages 348-351)  o  Light Dependent Repair    Carried out by a light activated enzyme called DNA photolyase   o  Excision Repair    Step 1: DNA repair endonuclease or endonuclease-containing enzyme  complex recognizes, binds to, and excises the damaged base or bases 
in DNA 
  Step 2: DNA polymerase fills in the gap by using the undamaged  complementary strand of DNA as template     Step 3: DNA ligase seals the break left by DNA polymerase to  complete the repair process     Base excision repair: Remove abnormal or chemically modified bases  from DNA    Can be initiated by a group of enzymes call DNA glycosylases  that recognize abnormal bases in DNA       They then cleave the glyosidic bond between the abnormal  base and 2-Deoxyribose creating AP sites (apurinic or 
apyrimidinic) 
background image   AP sites are recognized by endonucleases which act with  phosphodiesterase to excise the sugar-phosphate groups at 
these sites 
  DNA polymerase replaces the missing nucleotide per the  specifications of the complementary strand     DNA ligase seals it     Nucleotide excision repair: Pathways remove larger defects like  thymine dimers     Excinuclease activity begins on either side of the damaged  nucleotide and excises an oligonucleotide containing the 
damaged bases 
  In E. coli  o  Figure shown on page 349 
o  Requires the product of uvrA, uvrB, and uvrC 
o  A trimeric protein (2 uvrA and 1 uvrB polypeptide) 
recognizes the defect damaged site and binds to it 
using ATP to bend the DNA at the site of damage. 
o  UvrA dimer is then released and the UvrC protein bind  to the UvrB/DNA complex  o  UvrC protein cleaves the 4 th /5 th  phosphodiester linkage  from the damaged 5’ side   o  DNA helicase II releases the excised dodecamer  
o  DNA polymerase I fills the gap  
o  DNA ligase seals the remaining nick in the DNA 
o  Mismatch Repair    Repairs mismatched pairs after replication.    Typically, with normal bases     Detected by identifying the template strand and the new strand     Based on Methylation process because there is a portion of time  where the template strand is methylated and the newly synthesized 
strand is not. 
  In E. Coli     Requires the products of mutH, mutS, and mutU (Also uvrD)    MutS protein recognizes mismatches and binds to them to  initiate the repair process    MutH and MutL proteins join the complex     MutH contains GATC-Specific endonuclease activity and  cleaves the unmethylated strand at the hemi methylated (half 
methylated) GATC sites in either the 5’ or 3’ 
  If the incision occurs at the 5’ then a 5’ 3’ exonuclease  activity (Exonuclease Vii) is needed     If the incision occurs at the 3’ the 3’5’ Exonuclease activity  (Exonuclease I) 

This is the end of the preview. Please to view the rest of the content
Join more than 18,000+ college students at Towson University who use StudySoup to get ahead
School: Towson University
Department: Biology
Course: Genetics
Professor: Masters
Term: Spring 2016
Tags: bulmer, Genetics, biol309, towson, and University
Name: Exam III Study Guide
Description: This study guide is in depth and based on the study guide provided by Professor Bulmer as well as information from his Power Points.
Uploaded: 11/05/2016
10 Pages 52 Views 41 Unlocks
  • Better Grades Guarantee
  • 24/7 Homework help
  • Notes, Study Guides, Flashcards + More!
Join StudySoup for FREE
Get Full Access to Towson - BIOL 309 - Study Guide
Join with Email
Already have an account? Login here
×
Log in to StudySoup
Get Full Access to Towson - BIOL 309 - Study Guide

Forgot password? Reset password here

Reset your password

I don't want to reset my password

Need help? Contact support

Need an Account? Is not associated with an account
Sign up
We're here to help

Having trouble accessing your account? Let us help you, contact support at +1(510) 944-1054 or support@studysoup.com

Got it, thanks!
Password Reset Request Sent An email has been sent to the email address associated to your account. Follow the link in the email to reset your password. If you're having trouble finding our email please check your spam folder
Got it, thanks!
Already have an Account? Is already in use
Log in
Incorrect Password The password used to log in with this account is incorrect
Try Again

Forgot password? Reset it here