×
Get Full Access to OU - MUS 1523005 - Study Guide - Midterm
Get Full Access to OU - MUS 1523005 - Study Guide - Midterm

×

OU / Mathematics / MATH 1523 / What is the formula used to find coterminal angles for a number in rad

# What is the formula used to find coterminal angles for a number in rad Description

##### Description: This is the study guide for our first exam.
8 Pages 165 Views 1 Unlocks
Reviews

MATH 1523­005

## What is the formula used to find coterminal angles for a number in radians? Precalculus and Trigonometry

Spring Semester 2017

Professor: Ryan Reynolds

Notes Taken by Albany Ashton

Study Guide for Exam One:

∙ To convert a number that is currently in degrees into radians, use the formula: θ(π

180o )

∙ To convert a number that is currently in radians into degrees, use the formula: θ(180o

π )

Finding Coterminal Angles:

∙ To find coterminal angles for a number in radians, use the formula:  θ+¿−2 π ∙ To find coterminal angles for a number in degrees, use the formula:  θ+¿−360o Finding the Arc Length and Area of a Sector:

## What is the formula used to find coterminal angles for a number in degrees? ∙ For finding the arc length of a circle, use the formula:  s=θr Don't forget about the age old question of What are the three ways to form magma?

o s represents arc length, and r represents the radius of the circle

∙ For finding the area of a sector within a circle, use the formula:  Asect=12θr2 o Asect represents area of a sector, and r represents the radius of the circle ∙ For both of these formulas,  θ  must be in radians

Finding Linear Speed and Angular Speed:

∙ For finding the linear speed, use the formula:  υ=st

o s represents arc length, and t represents time

## What is the definition of a vertical shift? ∙ For finding the angular speed, use the formula:  ϖ=θt Don't forget about the age old question of What is the punishment for status offense?

o θ  represents revolutions or radians, and t represents time

∙ The algebraic relationship between linear speed and angular speed is shown through the  formula:  ϖr=υ∨θtr=rθt

Unit Circle:

∙ The equation for a circle is:  x2+y2=1

∙ The equation of the Pythagorean Identity is:  cos2+sin2=1

∙ The reference angles for the Unit Circle include:

o 30o∨π6 (√32,12 )

o 45o∨π4 (√22,√22 )

o 60o∨π3 (12,√32 )

Domain and Range of Cosine and Sine Functions:

∙ The domain of a function is the set of all possible input values.

o The domain for both sine and cosine can be any real numbers.

o Interval notation:  (−∞ ,∞) Don't forget about the age old question of How do you find conditional probability?

∙ The range of a function is the set of all the possible output values.

o The largest output that can be obtained for both sine and cosine is 1.

o The smallest output that can be obtained for both sine and cosine is ­1.

o Interval notation:  [−1,1 ]

Unit Circle Trig Functions:

∙ sin θ=y

∙ cosθ=x

∙ tan θ=yx∨sinθ

cosθ

∙ csc θ=1y∨1 Don't forget about the age old question of What statements or information are used to support the conclusion?
Don't forget about the age old question of What is bowlby’s attachment theory?
Don't forget about the age old question of What are the difference between disintegrative shaming and reintegrative shaming?

sin θ

∙ sec θ=1x∨1

cosθ

∙ cot θ=xy∨cosθ

sinθ

Secant, Cosecant, and Cotangent of the Reference Angles: ∙π6∨30o

o secπ6=2√3

3

o cscπ6=2

o cotπ6=√3

∙π4∨45o

o secπ4=√2

o cscπ4=√2

o cotπ4=1

∙π3∨60o

o secπ3=2

o cscπ3=2√3

3

o cotπ3=√33

Even and Odd Functions:

∙ Even functions satisfy the equation:  f (−θ)= f (θ) .  On a line graph, this would be  depicted by the line reflecting across the y­axis.

o Which trig functions are even?

 Cosine, and secant

∙ Odd functions satisfy the equation:  f (−θ)=− f (θ) .  On a line graph, this would be  depicted by the line reflecting across both the x­axis and y­axis.

o Which trig functions are odd?

 Sine, tangent, cosecant, and cotangent

Alternate Forms of the Pythagorean Identity: ∙ 1+cot 2(θ)=csc2(θ)

∙ 1+tan2(θ)=sec2(θ)

The Periods for each Unit Circle Function: ∙ sine:  2π

∙ cosine:  2π

∙ tangent:  π

∙ cosecant:  2π

∙ secant:  2π

∙ cotangent:  π

SOH CAH TOA:

∙ sin (θ)=opp

hyp

hyp

∙ tan (θ)=opp

Pythagorean Thorium: ∙ a2+b2=c2

The Cosine Rule:

A

∙ ∙ ∙

cos ¿

a2=b2+c2−2 bc ¿

B

cos ¿

b2=a2+c2−2ac ¿

C

cos ¿

c2=b2+a2−2 ba¿

The Sine Rule:

∙a

sin A=b

sin B=c

sinC

Cofunction Identities:

∙ Cofunction identity relating sine and cosine of different angles in the same right triangle: o sin (α)=cos(β)

o sin (β)=cos(α)

∙ Cofunction identities in terms of one angle, in degrees:

o sin (900−θ)=cos(θ)

o cos( 90o−θ)=sin (θ)

o tan ( 90o−θ)=cot (θ)

o cot ( 90o−θ)=tan(θ)

o sec (90o−θ)=csc (θ)

o csc (90o−θ)=sec (θ)

∙ Cofunction identities in terms of one angle, in radians:

o sin(π2−θ)=cos(θ)

o cos(π2−θ)=sin (θ)

o tan(π2−θ)=cot (θ)

o cot(π2−θ)=tan (θ)

o sec(π2−θ)=csc(θ)

o csc(π2−θ)=sec(θ)

Elevation and Depression Angles:

∙ Elevation angle:

o An angle based on the rotation from our eyeline to an upward position. ∙ Depression angle:

o An angle based on the rotation from our eyeline to a downward position. Graphs of Sine and Cosine:

∙ For any given angle  θ  from the original point,  f (θ) will be the vertical height, or  the distance from the x­axis.

∙ For any given angle  θ  from the original point,  g (θ)  will be the horizontal length,  or the distance from the y­axis.

∙ What are the five points needed to graph either a sine or cosine graph? o The 2 peaks, the 2 midline points, and the trough.

Amplitude, Period, Phase Shift and Frequency

∙ To reiterate, the Period of both sine and cosine is 2 π

∙ The Amplitude is the height from the center line to the peak, or to the trough.

∙ The Phase Shift is how far the function is horizontally to the right of the usual  position.

∙ The Vertical Shift is how the function is vertically up from the usual position.   ∙ We can have all of them in one equation:

o y=Asin ( Bx+C)+D

 amplitude is A

 period is  2π/ B

 phase shift is  –C/ B

 vertical shift is D

Page Expired It looks like your free minutes have expired! Lucky for you we have all the content you need, just sign up here