New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Physiology 215 Exam 3 Study Guide

by: Maddie Butkus

Physiology 215 Exam 3 Study Guide phys 215

Marketplace > Ball State University > phys 215 > Physiology 215 Exam 3 Study Guide
Maddie Butkus
GPA 3.7

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

This study guide covers all the lecture and book material for Exam 3 including the information covered before Exam 2 that was not on that exam.
Human Physiology
Dr. Kelly-Worden
Study Guide
Physiology 215, Worden, Exam 3, Study Guide
50 ?




Popular in Human Physiology

Popular in Department

This 12 page Study Guide was uploaded by Maddie Butkus on Saturday February 27, 2016. The Study Guide belongs to phys 215 at Ball State University taught by Dr. Kelly-Worden in Summer 2015. Since its upload, it has received 73 views.

Similar to phys 215 at BSU


Reviews for Physiology 215 Exam 3 Study Guide


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 02/27/16
STUDY GUIDE EXAM 3 SPR 15 1. Muscle  a. Types i. Smooth 1. Involuntary, uninucleated (1 nucleus), spindle­shaped,  woven with connective tissue fibers, unstriated, contains  numerous gap junctions ii. Cardiac 1. Primarily involuntary, only in the heart, contains generally  one nuclei, has own inherent rhythm and can contract  without an external stimulus, has faint strations and are  branched, gap junctions are common iii. Skeletal/Striated 1. Move the skeleton, consciously controlled, has very long  fibers (cells) which are unbranched, contains many nuclei,  in transverse section has lines (strations) running along the  short axis of the fiber b. structure/function i. Excitability­ respond to stimuli ii. Conductivity­ able to conduct electrical charge iii. Contractility­ shorten when stimulated iv. Extensibility­ able to be stretched again v. Elasticity­ able to recoil to its original length c. composition d. tension i. produced internally with the sarcomeres considered the contractile  component of the muscle as a result of cross­bridge activity and  the resulting sliding of filaments. e. load (external force) f. contraction i. The myosin cross bridges can bind to the actin, pulling these thin  filaments toward the center of the sarcomere.  This is the sliding  filament mechanism. ii. The width of the A band remains unchanged. iii. The H zone is shortened horizontally. iv. The I band decreases in width as the actin overlaps more with the  myosin. v. Neither the thick nor thin filaments change in length.  They change their position with one another. vi. The actin slides closer together between the thick filaments. vii. Three types of contraction: isotonic, isokinetic and isometric g. Six steps of sliding filament theory  1. The influx of calcium, triggering the exposure of binding on actin 2. Binding of myosin to actin 3.The power stroke of the cross bridge that causes the sliding of the thin  filaments 4.The binding of ATP to the cross bridge, which results in the cross bridge disconnecting from actin (you need ATP to let go) 5. Hydrolysis of ATP, which leads to the re­energizing and repositioning  of the cross bridge 6. The transport of calcium ions back into the sarcoplasmic reticulum  h. summation/tetanus i. Repetitive stimulation  1. increases its tension by twitch summation. ii. Twitch summation results from sustained elevation of  calcium in  the cytosol. iii. Rapid stimulation 1. cannot relax between stimuli 2. twitches merge into a smooth, sustained, maximal  contraction called tetanus i. Fatigue i. Muscle fatigue  1. an exercising muscle can no longer respond to the same  degree of stimulation with the same degree of contractile  activity. ii. Why? 1. increase in inorganic phosphate 2. accumulation of lactic acid    3. depletion of energy reserves   4. Increased oxygen consumption iii. Central fatigue occurs when the CNS can no longer activate motor  neurons supplying working muscles. 1. often psychological and is related to biochemical changes  at the synapses in the brain.   2. Hearing a. structure/function i. The external and middle ear  1. transmit sound waves to the fluid­filled inner ears.   ii. The inner ear the cochlea  1. receptors that convert sound waves into nerve impulses. iii. The vestibular apparatus of the inner ear 1. sense of equilibrium. iv. Each inner ear region has mechanoreceptors. b. how do we hear? i. Sound waves that reach the ear into the external auditory canal.  ii. Waves strike the tympanic membrane causing the membrane to  vibrate.  iii. It vibrates slowly in response to low­frequency sounds and rapidly  in response to high­ frequency sounds.  iv. The central area of the tympanic membrane is connected to the  malleus, which also starts to vibrate. The vibration is then picked  up by the incus, which transmits the vibration to the stapes.  v. As the stapes moves back and forth, it pushes the oval window in  and out.  3. The vestibular apparatus a. The semicircular canals of the vestibular apparatus detect rotational  acceleration or deceleration changes in the body. b. The structures of the vestibular apparatus have hair cells that are sensitive  to mechanical deformation i. These cells are sensitive to fluid shifts and the movement of other  structures, such as otoliths in the saccule and utricle. ii. Neural signals are generated by changes in these hair cells.   These  cells are transmitted to the brain for interpretation. 4. Taste  a. Receptors i. Taste receptors are located within taste buds in the tongue.   Dissolved molecules bind to receptor sites producing receptor  potentials.   b. how? i. Any chemical produces the differential stimulation of the four  receptors for taste.  ii. This generates a pattern of action potentials that travels along  afferent pathways to the brain. iii. One pathway passes through the limbic system for emotional and  behavioral processing.   Another pathway passes through the  thalamus to the cerebral cortex for conscious processing. 5. Heart a. structure/function i. It is the organ responsible for supplying blood and oxygen to the  body.  ii. While the heart is relaxed, venous blood flows from the right  atrium into the right ventricle through the open tricuspid valve. iii. The right atrium then contracts and more blood flows into the right ventricle. iv. The right ventricle then contracts, the tricuspid valve closes and  the pulmonary valve opens.    v. When the muscular wall of the right ventricle contacts, the blood  inside the heart chamber is put under more pressure, and the  tricuspid valve closes.  vi. Blood exits through the pulmonary semilunar valve into the  pulmonary trunk, which divides to form the right and left  pulmonary arteries.  vii. Blood returns from the lungs through the pulmonary veins.  viii. After contraction of the left ventricle, the aortic valve closes and  the mitral valve opens.  Blood flows from the left atrium into the  left ventricle. ix. The left atrium contracts, more blood flows into the left ventricle. x. The left ventricle contracts again, the mitral valve closes and the  aortic valve opens.   Blood flows into the aorta. b. action potentials i. Pacemaker Potential: 1. Potassium channel a. K+ permeability decreases between action  potentials 2. Sodium channel a. Not voltage gated b. Slow inward leak between action potentials c. Leak Channel – sodium is always coming in the cell 3. T­type calcium channel a. Transient, opens before membrane threshold is  reached b. Opens in the second half of the pacemaker potential 4. L­type calcium channel a. Opens when threshold is reached b. Responsible for the rising phase ii. Cardiac Action Potential 1. Phase 0 (Rapid depolarization) a. Opening of voltage gated sodium channels b. Potassium channels close 2. Phase 1 (Initial repolarization) a. Opening of transient potassium channels b. Sodium channels start to close 3. Phase 2 (Plateau phase)  a. Calcium enters through L­type calcium channels b. Opening of delayed and ir potassium channels 4. Phase 3 (Repolarization) a. Kir potassium conductance increases 5. Phase 4 (Resting membrane potential) a. Rest b. Diastole c. NO hyperpolarization  c. actions of the ANS i. Autonomic control of heart rate. Increased parasympathetic  activity decreases the heart rate, whereas increased sympathetic  activity increases the heart rate. ii. d. murmurs i. Heart murmur: irregular sound that is caused by a problem  with the valves  ii. When we listen to the heart we can determine which valve has  the problem  iii. Stenotic: valve that has trouble opening  iv. Lub­Whistle­Dub (Semi­Lunar having trouble opening) v. Lub­Dub­Whistle (AV having trouble opening) vi. Insufficient implies the valves are not closing properly  vii. Lub­Swish­Dub (Semi­Lunar are not closing properly) e. EKG (ECG) i. Test that checks for problems with the electrical activity of your  heart f. Arrhythmias: irregular heart beat i. Tachycardia (abnormal rapid heart beat) ii. Bradicardia (abnormal slow heart beat) iii. Extrastoles (premature beats) 1. Common deviation iv. Atrial Flutter 1. Rapid, regular atrial depolarization (200­380 bpm) v. Atrial Fibrillation 1. Rapid, irregular atrial depolarization 2. No P waves 3. Irregular ventricular rhythm 4. Pulse deficit (not getting blood leaving the heart) vi. Ventricular Fibrillation (the worst) 1. Ventricles are out of sync 2. Serious rhythmic abnormality 3. 4 minutes before brain damage or death vii. Heart Block 1. Normal atrial 2. Lower than normal ventricular rate g. cardiac output h. nodes and rates i. SA node­  responsible for normal heart rate  1. right atrial wall near the superior vena cava  2. 70­80 bpm ii. AV node­  1. Base of the right atrium near the septum 2. 40­60 bpm (if it’s in charge which is unusual)  iii. Bundle of His 1. Tract of cells running from the AV node to the  interventricular septum and dividing into right and left  branches 2. 20­40 bpm iv. Purkinje fibers  1. Run from the bundle of His and spread through the  ventricular myocardium 2. 20­40 bpm 6. Neuromuscular junction a. Definition: a synaptic connection formed between a motor neuron axon  and a muscle fiber b. neurotransmitter and neurotransmitter release i. Acetylcholine­ is the neurotransmitter released at the  neuromuscular junction. ii. Excess acetylcholine in the synaptic cleft is destroyed  1. broken down into choline and acetate by  acetylcholinesterase 2. this terminates the transmission  c. EPP (end­plate potential) i. Change in the membrane potential of the muscle cell fiber ii. Excites voltage gated ion channels in adjacent regions of the  sarcolemma. Diffusion of Na+ and K+ through their separate  channels depolarizes the membrane and initiations action potential  in muscle fiber. 7. ANS a. Divisions: i. Sympathetic (thoracolumbar)­  1. arises from the thoracic and lumbar region of the spinal  cord ii. Parasympathetic (craniosacral)­ 1. arises from the brain and sacral region of the spinal cord b. agonists and antagonists: i. Agonists 1. Mimic the neurotransmitter  ii. Antagonists 1. block autonomic responses c. neurotransmitters and receptors i. Acetylcholine 1. ACh receptors (parasympathetic)  a. Cholinergic b. Nicotinic or muscarinic ii. Norepinephrine 1. NE receptors a. Adrenergic b.  or β (alpha or beta) d. regulation by the CNS: i. Autonomic activities are controlled by different areas of the CNS  including:    ii. Spinal cord iii. Medulla iv. Hypothalamus v. Prefrontal association cortex. e. role in homeostasis/actions on all organs  i. Maintains homeostasis 1. Digestion 2. Respiration 3. Heart rate/contractility 4. Blood pressure 5. Excretion ii. Some Other functions 1. Pupil dilation/constriction 2. Sexual response f. dual innervation: i. The visceral organs receive dual innervation.   ii. They are signaled by both subdivisions of the ANS.   iii. Usually both subdivisions are active in controlling the activity of  an internal organ.   8. Reflexes a. Any response that occurs automatically without conscious effort b. Simple or basic i. Built in 1. Remove hand from hot stove 2. Spinal cord c. Acquired or conditioned i. Practice or learning 1. Reading music while playing 2. Brain 9. Blood vessels a. blood pressure i. It is measured by a sphygmomanometer 1. the cuff they wrap around your arm   ii. When the pressure in the cuff is greater than the brachial artery 1. blood flow is blocked through the vessel 2. no sound is heard through a stethoscope placed over the  brachial artery at the inside of the elbow iii. When the pressure in the cuff is slowly released,  1. vibrations and sound occur when it falls just below systolic  pressure 2. the first heart sound indicates systolic pressure (e.g., 120  mm Hg). iv. When the falling cuff pressure drops below diastolic pressure,  1. vibrations and sound disappears 2. This indicates diastolic pressure (80 mm Hg). v. The pulse pressure is the difference between the systolic and  diastolic pressures (120 ­ 80). b. pulse pressure: i. The pulse pressure is the difference between the systolic and  diastolic pressures (120 ­ 80). c. mean arterial pressure i. The equation is: 1. mean arterial pressure = diastole pressure + 1/3 the pulse  pressure ii. As one example, from the previous data : 80 + 1/3 (40) equals 93 iii. This average is weighted, as about two­thirds of the cardiac cycle  is spent in diastole.      d. flow and resistance to flow i. F (blood flow) 1. is from an area of higher pressure to an area of lower  pressure (pressure gradient). ii. R (resistance) 1. opposition to blood flow through a vessel.   2. depends on three factors:  a. blood viscosity (thickness of blood), b. vessel length, 3. vessel radius. (major determinant) a. A slight change in radius produces a significant  change in blood flow.  10. Vision a. photoreceptors and vision i. Rods­ night vision (see purple) ii. Cones­ day vision iii. Bipolar cells­ synapse with rods and cones iv. Ganglion cells­ receive input from bipolar cells, axons for the optic nerve v. Rod signals travels from bipolar cells, through amacrine cells to  ganglion cells b. Accommodation: i. Increasing the strength (shape) of the lens (near vision) ii. Ciliary muscle c. Adaptation: i. Dark adaptation  1. gradually distinguish in the dark  2. regeneration of rod photopigments  ii. Light adaptation  1. gradually distinguish objects with more light   2. cone photopigments d. pupillary reflex: i. controls the diameter of the pupil, in response to the intensity  (luminance) of light that falls on the retinal ganglion cells of  the eye, thereby assisting in adaptation to various levels of  lightness/darkness. e. color blindness: i. when individuals lack a particular cone type, so their color vision  is a product of the differential sensitivity of only two types of  cones f. eye anatomy i. Retina­ the innermost layer of the eye that contains the  photoreceptors and neuron cells ii. Choroid­ layer beneath the sclera that helps supply blood to the  retina iii. Optic disk­ blind spot where the optic nerve exits the eye iv. Fovea­ the area of the retina with the highest density of cones  (color vision) within the macula lutea v. Lens­ transparent, biconvex structure of the eye that focuses light  rays entering through the pupil to form an image on the retina.  vi. Cornea­ transparent layer of fibrous connective tissue that with the  lens refracts and focuses light rays vii. Ciliary body­ muscles controlling the shape of the lens continuous  with and beneath the iris g. Vision Problems i. Myopia (near sided) ii. Hyperopia (far sided) iii. Presbyopia (both & need bifocals)  iv. Astigmatism 11. Sleep  a. sleep waves i. Alpha ii. Theta b. disorders i. Insomnia­ inability to fall asleep, stay asleep or get enough sleep  ii. Narcolepsy (hypersomnia)­ rapid onset of sleep, with rapid onset  of REM sleep  iii. Sleep Apnea­ Brief periods of non breathing, may awaken and  gasp for air iv. Sleep walking v. Nightmares­ vivid anxiety provoking dreams  vi. Dangerous if person has REM sleep behavior disorder (RBD)  when paradoxical sleep not occurring  vii. Night Terrors­ person bolts from deep sleep with loud  bloodcurdling scream viii. REM Disorder – not proper inhibition of the thalamus – start  acting out their dream c. Role of the reticular formation: Arousal system 12. Somatosensory a. receptor types b. habituation and sensitization i. Habituation 1. Decreased responsiveness to repeated stimuli 2. Modification of Ca2+ channels 3. Decrease opening, decrease release ii. Sensitization 1. Increased responsiveness to mild stimuli 2. Enhanced Ca2+ entry, enhanced release 3. Serotonin 4. cAMP 5. Blocked K+, increased action potential c. pain and neurotransmitters i. Substance P  1. Activates pain pathway ii. Glutamate 1. Activates AMPA (action potential) 2. Activates NMDA a. Second messenger pathway b. hyperexcitability iii. Three types of pain receptors 1. Mechanonociceptors 2. Thermal nociceptors 3. Polymodal nociceptors iv. Pain is a result of substances released by damaged tissues:  prostaglandins, histamine, and substance P.  d. discrimination i. ability to distinguish origin of stimuli 1. Fine­ small receptive field 2. Poor­ large receptive field e. Afferent: Afferent pathway i. Sends signal to integrating center f. Efferent: Efferent pathway i. Instructions to muscle or gland 13. Smell and receptor types a. Chemoreceptors – detect chemical changes for both sense b. Olfactory Receptors: in the nose are specialized ending of afferent neurons c. Different olfactory receptors detect discrete parts of an odor. d. Odor discrimination is coded by patterns of activity in the olfactory bulb  glomeruli. Afferent signals are sorted by scent component.  e. The olfactory system adapts quick


Buy Material

Are you sure you want to buy this material for

50 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Bentley McCaw University of Florida

"I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"

Anthony Lee UC Santa Barbara

"I bought an awesome study guide, which helped me get an A in my Math 34B class this quarter!"

Bentley McCaw University of Florida

"I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"

Parker Thompson 500 Startups

"It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.