×
Log in to StudySoup
Get Full Access to TTU - MATH 1330 - Study Guide - Midterm
Join StudySoup
Get Full Access to TTU - MATH 1330 - Study Guide - Midterm

Already have an account? Login here
×
Reset your password

TTU / Mathematics / MATH 1330 / How do you do scalar multiplication?

How do you do scalar multiplication?

How do you do scalar multiplication?

Description

.lst-kix_ee1jiz5nqy2-0 > li:before{content:"- "}.lst-kix_ee1jiz5nqy2-2 > li:before{content:"- "}.lst-kix_ee1jiz5nqy2-1 > li:before{content:"- "}.lst-kix_ee1jiz5nqy2-3 > li:before{content:"- "}.lst-kix_ajd2ukblcu4g-1 > li:before{content:"- "}.lst-kix_ajd2ukblcu4g-2 > li:before{content:"- "}.lst-kix_ajd2ukblcu4g-0 > li:before{content:"- "}ul.lst-kix_pvomdrc4b2bv-0{list-style-type:none}ul.lst-kix_pvomdrc4b2bv-1{list-style-type:none}ul.lst-kix_pvomdrc4b2bv-2{list-style-type:none}ul.lst-kix_pvomdrc4b2bv-3{list-style-type:none}ul.lst-kix_pvomdrc4b2bv-4{list-style-type:none}ul.lst-kix_pvomdrc4b2bv-5{list-style-type:none}ul.lst-kix_pvomdrc4b2bv-6{list-style-type:none}ul.lst-kix_pvomdrc4b2bv-7{list-style-type:none}ul.lst-kix_pvomdrc4b2bv-8{list-style-type:none}.lst-kix_ee1jiz5nqy2-6 > li:before{content:"- "}.lst-kix_ee1jiz5nqy2-5 > li:before{content:"- "}.lst-kix_ee1jiz5nqy2-7 > li:before{content:"- "}.lst-kix_ee1jiz5nqy2-4 > li:before{content:"- "}.lst-kix_ee1jiz5nqy2-8 > li:before{content:"- "}.lst-kix_pvomdrc4b2bv-8 > li:before{content:"- "}.lst-kix_pvomdrc4b2bv-7 > li:before{content:"- "}.lst-kix_pvomdrc4b2bv-4 > li:before{content:"- "}.lst-kix_pvomdrc4b2bv-6 > li:before{content:"- "}.lst-kix_pvomdrc4b2bv-5 > li:before{content:"- "}ul.lst-kix_ajd2ukblcu4g-0{list-style-type:none}.lst-kix_pvomdrc4b2bv-2 > li:before{content:"- "}ul.lst-kix_ajd2ukblcu4g-3{list-style-type:none}ul.lst-kix_ajd2ukblcu4g-4{list-style-type:none}ul.lst-kix_ajd2ukblcu4g-1{list-style-type:none}.lst-kix_pvomdrc4b2bv-3 > li:before{content:"- "}ul.lst-kix_ajd2ukblcu4g-2{list-style-type:none}.lst-kix_pvomdrc4b2bv-1 > li:before{content:"- "}.lst-kix_pvomdrc4b2bv-0 > li:before{content:"- "}.lst-kix_ajd2ukblcu4g-8 > li:before{content:"- "}.lst-kix_ajd2ukblcu4g-3 > li:before{content:"- "}ul.lst-kix_ee1jiz5nqy2-1{list-style-type:none}ul.lst-kix_ee1jiz5nqy2-0{list-style-type:none}ul.lst-kix_ajd2ukblcu4g-7{list-style-type:none}ul.lst-kix_ee1jiz5nqy2-3{list-style-type:none}ul.lst-kix_ajd2ukblcu4g-8{list-style-type:none}ul.lst-kix_ee1jiz5nqy2-2{list-style-type:none}ul.lst-kix_ajd2ukblcu4g-5{list-style-type:none}ul.lst-kix_ee1jiz5nqy2-5{list-style-type:none}ul.lst-kix_ajd2ukblcu4g-6{list-style-type:none}ul.lst-kix_ee1jiz5nqy2-4{list-style-type:none}ul.lst-kix_ee1jiz5nqy2-7{list-style-type:none}.lst-kix_ajd2ukblcu4g-4 > li:before{content:"- "}ul.lst-kix_ee1jiz5nqy2-6{list-style-type:none}ul.lst-kix_ee1jiz5nqy2-8{list-style-type:none}.lst-kix_ajd2ukblcu4g-5 > li:before{content:"- "}.lst-kix_ajd2ukblcu4g-6 > li:before{content:"- "}.lst-kix_ajd2ukblcu4g-7 > li:before{content:"- "}

If you want to learn more check out When the hairpin loop forms on the strand of mrna, what happens to the transcription?

Midterm 2 Study Guide (CH 3 and 6)

• Matrices: classified in terms of numbers of rows and columns they have - m rows and n columns ⇒ Don't forget about the age old question of What is the most common definition of a felony?

• Sum of matrices: the sum of is a matrix C whose elements are

• Scalar multiplication:  multiplying a matrix by a real at number (called a scalar) results in a matrix in which each entry of the original matrix is multiplied by the real #

We also discuss several other topics like What are the objectives of an association as defined in the charter?

     A =         ⎡⎤  then CA =         ⎡⎤Don't forget about the age old question of Are there distinct processing systems used for object recognition?

        ⎣⎦                ⎣

If you want to learn more check out What is the ebbinghaus learning curve?

• Product of two matrices: given an A and anB, the matrix product AB is an CDon't forget about the age old question of What are the aspects of development?

EX:

Final AB if A =        ⎡3 4⎤         B =        ⎡a b c d⎤ ⇒        ⎡3a+4e     3b+4f     3c+4g     3d+4h  ⎤

⎢2 5⎥                ⎣e f g h ⎦        ⎢2a+5e     2b+5f     2c+5g     2d+5h  ⎥

⎣2 4⎦                                ⎣6a+10e   66+10f   6c+10g   6d+10h⎦

• Identity matrix: a square  that has 1s down its diagonal and 0s everywhere else

I =        ⎡1 0 0⎤

⎢0 1 0⎥        

⎣0 0 1⎦        

• Augmented matrix: the numbers on the left side of the solid line from the coefficient matrix with each column containing the coefficients of a variable

Ex:        ⎧        ⎡1 2   3|6⎤

        ⎢1 0  -1|0⎥        

                ⎣1 -1 -1|4⎦                

        

• Elementary row operations: 

(1) interchange two rows

(2) add a multiple of one row to another row

(3) multiply a row by a nonzero constant

• Inverse matrices: two square matrices, A and B, are called inverses of each other if and  ⇒    

• Inverse at a 2x2 matrix:       if A=        ⎡a b⎤, then         

                                        ⎣c d⎦        

                

• Determinant of a 2x2 matrix:

                   ⎡a b⎤ =        ⎡a b⎤ =        

⎣c d⎦        ⎣c d⎦        

Ex:

⎡2  4⎤ ⇒

⎣3 -4⎦        

• Open Leontief Model: the technological equation for an open leontief model is

  • A is the technology matrix -x is the gross production matrix
  • D is the final demands matrix
  • This is called an open model because some of the goods from the economy are “open” or available to those outside the economy

• Closed Leontief Model: if a model is developed in which all inputs and outputs are used within the system

Chapter 6

• Simple Interest:

• Future value: the future amount of an investment at the end of an interest period is the sum of the principal and the interest

  • The principal at an investment is also called present value

Page Expired
5off
It looks like your free minutes have expired! Lucky for you we have all the content you need, just sign up here