Limited time offer 20% OFF StudySoup Subscription details

NCS - IE 316 - Class Notes - Week 4

Created by: Ling Mao Elite Notetaker

NCS - IE 316 - Class Notes - Week 4

School: North Carolina State University
Department: Industrial Engineering
Course: Manufacturing Engineering I - Processes
Professor: Carter Keough
Term: Spring 2018
Tags: Engineering and manufacturing
Name: ISE316 Exam 1 Notes
Description: 1) Intro to Manufacturing Engineering 2) Mateirals and Processes 3) Classification of Manufacturing Processes 4) Engineering Specifications 5) Measurement & Inspection 6) Machining Fundamentals: Machining Mechanics, Power & Energy, Machining Factors, Machinability
Uploaded: 02/13/2018
This preview shows pages 1 - 11 of a 112 page document. to view the rest of the content
background image ISE316 Contents 1)Manufacturing Engineering...........................................................................22)Materials and Processes................................................................................3 Four types of Engineering Materials..............................................................3Material Properties........................................................................................7General Notes............................................................................................. 12 3)Classification of Manufacturing Processes..................................................134)Engineering Specifications..........................................................................15 Examples.................................................................................................... 24 5)Measurement & Inspection.........................................................................27 Examples.................................................................................................... 29 6)Machining Fundamentals............................................................................37 Machining................................................................................................... 37Machining Mechanic....................................................................................41Power & Energy........................................................................................... 45Machining Factors.......................................................................................46Machinability............................................................................................... 52Examples.................................................................................................... 53
background image ISE316 1)           Manufacturing Engineering Why important? - Historically - Economically - Technologically Traditional Product Development : Over the Wall Approach  - Serial process: very time consuming and costly - Not what customer wants New Mantra : Integrated or Concurrent Engineering - Parallel process - Incorporate voices of all stakeholders = successful product development - 80% of product cost is decided in design phase - Product Attributes of Cost & Quality Involve design & manufacturing (Big M) Manufacturing = manus (hand) + factus (make) Technological def  = processing to make products  “The application of physical and chemical processes to later the geometry, 
properties, and/r appearance of a given starting material to make parts or to make 
products”
Economical def  = have value added “The transformation of materials into items of greater value by means of one or 
more processing and/or assembly operations”
- Once a product has been designed, the materials and processes determine the cost of that 
product to a large extent
- Material & manufacturing process selection generally go hand in hand
background image ISE316 2)           Materials and Processes How are materials chosen? Voice of Customer requirements Mechanical properties, aesthetic charac., manufacturing process capability Four types of Engineering Materials - Different constitute chemistries - Different mechanical, physical, electrical, thermal properties - Different material behavior when subjected to forces, T, other
parameters of the processes determine success of the
manufacturing operation
(1) Ceramics Description Inorganic, nonmetallic solids Crystalline, partly crystalline or amorphous Typically compounds formed between metals and non­metals Characteristics – very hard, rigid, and brittle (limited tensile strength); + T and wear 
resistance
Application
High T app that do not involve impact, vibration, or other substantial 
loading
Widely used as thin­film coatings for wear and T resistance 
Ex. tungsten carbides, alumimna, boron nitride
(2) Metals Description Elements & alloys with  crystalline properties  – crystal structure is  responsible for the mechanical properties of all metals (true for ceramics 
and some polymers as well)
Type, orientation and boundaries between crystals govern how plastic 
deformation occurs
Characteristics – Malleability, ductility, electrical thermal conductivity and opacity
Classification
BCC – Fe, Cr, Mo, Ta, W FCC – Al, Cu, Au, Pb, Ni
background image ISE316 HCP – Mg, Ti, Zn Ferrous  Based on Fe Account for ~85% of metal used in US Steels  = alloys of iron containing C, which prevents sliding dislocations in  Fe crystal lattice, results in + hardness Plain Carbon Steels  = C is the main alloying element Low C Steel 
(<0.2% C)
Easy to form Widely used for sheet
metal (automotive)
Medium C Steel
(>0.2­0.5% C)
Better strength than 
low C steel
Formed slightly more 
difficultly
Engine parts, 
connecting rods, 
crankshafts
High C Steel 
(>0.5%C)
High strength and 
stiffness
Knifes, springs Stainless Steels  = Highly alloyed steel (>15% Cr and <1.2% C) Corrosion resistance + ductile than carbon steels (more difficult to work
with in certain applications)
+ expensive than carbon steels 2XX (Austenitic)
3XX (Austenitic)
Non­
magnetic
304 Standard Stainless 
(Food, sterilization)
316 (L/F/N) High 
Corrosion Environment 
with added Ni and Mo 
4XX
(Ferritic & Martensitic)
Magnetic Tool Steels  = special alloyed and heat­treated steels for cutting  tools, dies, and molds T, M – High Speed Steels (HSS) Cutting tools H – Hot­working tool steels casting, forging, extrusion
background image ISE316 D – Cold­working Tool steels Dies for sheet metal work W – Water­hardening Tool Steels Low cost, but limited to low­
temperature app
Cast Irons  = steel with C 2.1­4% and 1­3% Si Good for metal casting, easy to cast Lower melting point Tend to be more brittle Non­ferrous Lower in strength than steel, generally Some have better strength­to­weight ratios Some have better non­mechanical properties (corrosion resistance, 
electrical conductivity, etc.)
Ex. Al, Cu, Mg, Ni, Ti, Zn
(3) Polymers Characteristics  Large molecules Consist of long repeating chains of smaller structural units ( monomers ) Organic, inorganic, or hybrid Classification
background image ISE316 ThermoPlastics  (TPs): Melt when heated and solidify when cooled ­­ Can be melted and solidified
multiple times – involve linear polymer chains that are not interconnected
Crystalline TPs have a melting point Tm Amorphous TPs have a glass transition temperature Tg ~70% of plastics in the US
Ex. Acetals, Acrylics (PMMA), ABS, Fluoropolymers, Polyamides 
(Nylon), Polycarbonate, Polyesters, Ployethylene, PET, Polypropylene, 
Polystyrene, PVC
Elastomers Capable of large elastic deformation when subject to low stresses (some 
can withstand extensions of 500% of more)
Long molecules are tightly kinked when unstretched Degree of cross­linking is substantial below that of thermosets When stretched, molecules are forces to uncoil and straighten. C 
Natural resistance to uncoiling provides initial elastic modulus
Rubber Natural rubber Synthetic elastomers Thermosets  Highly cross linked so that the molded part is essentially one 
macromolecule – cannot be re­melted (melting changes mechanical 
properties)–do not have a glass transition T
Generally +brittle and rigid; ++resistant to solvents (medical app); 
withstand ++T than TPs
Thermoset activation Heat activated  – thermoset in powder is molded and heat initiates  molecular cross linking in an oven Catalyst and Mixed­Based systems  – 2 components are mixed  together resulting in chemical reaction that leads to cross­linking Photopolymer (Activated by Energy of Light ) –Using ultraviolet  light Ex. Epoxies, Phenolics, Polyurethanes (cup holder) (4) Composites Description: Engineer or naturally occurring materials,  2+  materials combined to  achieve desired physical properties Primary phase is the  matrix ; embedded phase is the  reinforcing agent Constituents remain separate and distinguishable at 
macroscopic/microscopic scale within finished structure
Metal Matrix Composites (MMCs) Typically lightweight metal matrix (Al or Ti) Reinforcement phase often metal or ceramic fibers with higher stiffness or 
strength
background image ISE316 Polymer Matrix Composites (PMCs) Typically use thermosetting matrix Reinforcing fibers such as fiberglass
Ex. brake linings, glass­filled polyurethane
Material Properties Mechanical – Density, hardness, strength (tensile, compressive, shear), stiffness, toughness o Tensile strength  Engineering stress   s= F A 0 [ MPa ] Engineering strain  e= LL 0 L o [ mm
mm
] Ductility  – None of these is very accurate because of necking and  the nonuniform effect on elongation and area reduction  Elongation   EL= L f L o L o Area reduction   AR= A o A f A o True Stress­Strain curve – using the actual area that decreases rather the initial area. True stress values are higher in the plastic region. After necking, metal actually becomes stranger as strain increases = strain 
hardening or work hardening
Flow curve – with strain hardening exponent n and strength coef K σ =K ϵ n True Stress   σ = F A → σ=s(1+e) True Strain    ϵ= L o L dL L = ln L L 0 → ϵ=ln ?(1+e)
background image ISE316 Elastic  behavior = can return to its original length  Modulus of elasticity – measure the  stiffness   s=Ee Plastic  behavior = cannot return, deformation (Ultimate)  Tensile strength – before necking   TS= F max A 0 Necking – area necks until failure occurs
Failure stress – stress immediately before failure 
Yield strength  or yield stress or elastic limit = the stress at which a material starts to deform plastically, usually offset 0.2% from the straight stress­
strain line
Types of Stress­Strain relationships Perfectly elastic – behavior completely defined by its stiffness or  E Elastic and perfectly plastic – elastic + horizontal plastic region When metals head too much so they recrystallize rather than strain 
harden during deformation.
Elastic and  strain hardening  – elastic + flow curve Most ductile metals when cold worked o Compressive strength  Similar to tensile strength, uses stress and strain curve but increasing cross 
section Area (higher engineering stress). Similar relationships. 
background image ISE316 o Brittleness  Transverse rupture strength   TRS= 1.5 FL b t 2 Bending or Flexure test Cleavage – a failure mode associated with ceramics and metals at low T, 
where separation rather than slip occurs along crystallographic places
o Shear strength Shear stress   τ= F A Shear strain  γ= δ
b
Torsion test    τ= T π R 2 t
background image ISE316 Elastic region –  G  is shear modulus  τ= Plastic region – material strain hardens, similar to flow curve Shear Strength  – shear stress at fracture   =0.7 TS o Hardness Measure resistance to elastic deformation (penetration) – rubbers  Durometer  Scleroscope – measure the mechanical energy absorbed  Measure resistance to plastic deformation (indentation) – metals  Brinell Hardness Test – close correlation to TS. Not for ceramics
Rockwell Hardness Test
Vickers Test
Knoop Test
o Viscosity  – resistance to flow;  Fluidity  – ease with which a fluid flows Newtonian fluid – a fluid with constant viscosity  Important for polymer­shaping processes and glass manufacturing 
background image ISE316 Viscoelasticity  – characteristic of polymers when it experiences stress and T over  time σ ( t ) = (t)ϵ o Density   – weight per unit of volume  Thermal – Melting charac (MP, heat of fusion), coeff of Thermal expansion, specific heat, 
thermal conductivity
o Hot  hardness  – ability to retain hardness at high T (tooling) o Recrystallization T o Thermal Expansion  L 2 L 1 = α L 1 ( T 2 T 1 ) o Melting point o Specific heat and thermal conductivity Thermal diffusivity   = k C ρ o Mass diffusion Fick’s first Law Electrical – Resistivity, conductivity o Resistivity   R=r L A

This is the end of the preview. Please to view the rest of the content
Join more than 18,000+ college students at North Carolina State University who use StudySoup to get ahead
112 Pages 87 Views 69 Unlocks
  • Better Grades Guarantee
  • 24/7 Homework help
  • Notes, Study Guides, Flashcards + More!
Join more than 18,000+ college students at North Carolina State University who use StudySoup to get ahead
School: North Carolina State University
Department: Industrial Engineering
Course: Manufacturing Engineering I - Processes
Professor: Carter Keough
Term: Spring 2018
Tags: Engineering and manufacturing
Name: ISE316 Exam 1 Notes
Description: 1) Intro to Manufacturing Engineering 2) Mateirals and Processes 3) Classification of Manufacturing Processes 4) Engineering Specifications 5) Measurement & Inspection 6) Machining Fundamentals: Machining Mechanics, Power & Energy, Machining Factors, Machinability
Uploaded: 02/13/2018
112 Pages 87 Views 69 Unlocks
  • Better Grades Guarantee
  • 24/7 Homework help
  • Notes, Study Guides, Flashcards + More!
Join StudySoup for FREE
Get Full Access to NCS - IE 316 - Class Notes - Week 4
Join with Email
Already have an account? Login here
×
Log in to StudySoup
Get Full Access to NCS - IE 316 - Class Notes - Week 4

Forgot password? Reset password here

Reset your password

I don't want to reset my password

Need help? Contact support

Need an Account? Is not associated with an account
Sign up
We're here to help

Having trouble accessing your account? Let us help you, contact support at +1(510) 944-1054 or support@studysoup.com

Got it, thanks!
Password Reset Request Sent An email has been sent to the email address associated to your account. Follow the link in the email to reset your password. If you're having trouble finding our email please check your spam folder
Got it, thanks!
Already have an Account? Is already in use
Log in
Incorrect Password The password used to log in with this account is incorrect
Try Again

Forgot password? Reset it here