Limited time offer 20% OFF StudySoup Subscription details

# ISU - MATH 166 - Math 166 Calculus 2 - Study Guide

### Created by: Rebecca Wilson Elite Notetaker

> > > > ISU - MATH 166 - Math 166 Calculus 2 - Study Guide

ISU - MATH 166 - Math 166 Calculus 2 - Study Guide

##### Description: This study guide covers what will be on the next exam. They cover sections 8.6, 8.7, and 10.1.
This preview shows pages 1 - 2 of a 4 page document. to view the rest of the content
Math 166 - Calculus 2   Chapter 8: Techniques of Integration  8.6 | Numerical Integration
The Trapezoidal Rule:
To approximate   use (x)dx b a f   T =  (y y y .. y ) 2 Δx 0 + 2 1 + 2 2 + . + 2 n−1 y n   The y’s are the values of   f   ​at the partition points  , where x x, Δx, ... , x   n xx x 0 a 1 1 + Δ x 2 + 2     n−1 + ( − 1   n b       = (b-a)/n x Δ
Simpson’s Rule:
To approximate   use (x)dx b a f   S =  (y 4 y .. y y ) 3 Δx 0 + 2 + 2 2 + . + 2 n−2 + 4 n−1 y n   The y’s are the values of   f   ​at the partition points  , the number  n x x, Δx, ... , x   n xx x 0 a 1 1 + Δ x 2 + 2     n−1 + ( − 1   n b     is even, and   = (b-a)/n x Δ
Error Estimations:
If
f’’  ​is continuous and M is any upper bound for the values of   on [a,b], then the error in the f| ′′ |   approximation of the integral of  f ​ from ​a​ to ​b​ for n steps satisfies the inequality:   Trapezoidal Error:   E | | T | | ≤ 12n 2 M(ba) 3     Simpson’s Error:  E | | S | | ≤ 180n 4 M(ba) 4
8.7 | Improper Integrals
Integrals with infinite limits of integration are improper integrals of Type 1.
1. If f(x) is continuous on [a,  ), then   (xdx (xdx a f = lim b→∞ b a f   2. If f(x) is continuous on (- , b], then    (xdx (xdx b −∞ f = lim a→−∞ b a f
3. If f(x) is continuous on (- ,  ), then ∞ ∞    , where  c ​ is any number (xdx (xdx  (xdx −∞ f = lim a→∞ c a f +   lim b→∞ b c f   In each case, if the limit is finite we say that the improper integral  converges ​and that the limit is  the  value​ of the improper integral. If the limit fails to exist, the improper integral ​diverges​.
Integrals of functions that become infinite at a point within the interval of integration are
improper integrals of Type 2.
1. If f(x) is continuous on (a, b] and discontinuous at  a ​, then  (xdx (xdx b a f = lim ca + b c f   2. If f(x) is continuous on [a, b) and discontinuous at  b ​, then   (xdx (xdx b a f = lim cb c a f   3. If f(x) is discontinuous at c, where a < c < b, and continuous on [a,c) (c, b], then    (xdx (xdx  (xdx b a f = c a f +   b c f   In each case, if the limit is finite we say that the improper integral  converges ​and that the limit is  the  value​ of the improper integral. If the limit does not exist, the integral ​diverges​.
Direct Comparison Test:
Let
​and ​g​ be continuous on [a,  ) with 0  f(x)  g(x) for all x  a. Then,   1.  converges if   converges. (xdx a f (xdx a g   2.  diverges if   diverges. (xdx a g (xdx a f

Limit Comparison Test
If the positive functions f and g are continuous on [a,  ), and if
,  0 < L <  , then lim x→∞ f(x) g(x) L     and  both converge or both diverge. (xdx a f (xdx  a g          Chapter 10: Infinite Sequences and Series

This is the end of the preview. Please to view the rest of the content
Join more than 18,000+ college students at Iowa State University who use StudySoup to get ahead
4 Pages 33 Views 26 Unlocks
• Notes, Study Guides, Flashcards + More!
Join more than 18,000+ college students at Iowa State University who use StudySoup to get ahead
##### Description: This study guide covers what will be on the next exam. They cover sections 8.6, 8.7, and 10.1.
4 Pages 33 Views 26 Unlocks
• Notes, Study Guides, Flashcards + More!
Recommended Documents
Get Full Access to ISU - Math 166 - Study Guide - Midterm
×
Get Full Access to ISU - Math 166 - Study Guide - Midterm

I don't want to reset my password

Need help? Contact support

Need an Account? Is not associated with an account
We're here to help