.lst-kix_9ycbvglffw5i-8 > li:before{content:"" counter(lst-ctn-kix_9ycbvglffw5i-8,decimal) ". "}.lst-kix_9ycbvglffw5i-7 > li:before{content:"" counter(lst-ctn-kix_9ycbvglffw5i-7,lower-roman) ". "}ol.lst-kix_9ycbvglffw5i-0.start{counter-reset:lst-ctn-kix_9ycbvglffw5i-0 0}ol.lst-kix_2ffinenr8m70-2.start{counter-reset:lst-ctn-kix_2ffinenr8m70-2 0}.lst-kix_2ffinenr8m70-6 > li{counter-increment:lst-ctn-kix_2ffinenr8m70-6}.lst-kix_9ycbvglffw5i-0 > li:before{content:"" counter(lst-ctn-kix_9ycbvglffw5i-0,lower-latin) ". "}ol.lst-kix_naw8ljaj8cmi-3.start{counter-reset:lst-ctn-kix_naw8ljaj8cmi-3 0}ol.lst-kix_9ycbvglffw5i-3.start{counter-reset:lst-ctn-kix_9ycbvglffw5i-3 0}.lst-kix_9mitsmlx4h3o-3 > li{counter-increment:lst-ctn-kix_9mitsmlx4h3o-3}ol.lst-kix_naw8ljaj8cmi-0.start{counter-reset:lst-ctn-kix_naw8ljaj8cmi-0 0}.lst-kix_naw8ljaj8cmi-6 > li{counter-increment:lst-ctn-kix_naw8ljaj8cmi-6}.lst-kix_9ycbvglffw5i-1 > li{counter-increment:lst-ctn-kix_9ycbvglffw5i-1}.lst-kix_wvx8hu4gm1uj-0 > li:before{content:"● "}.lst-kix_wvx8hu4gm1uj-1 > li:before{content:"○ "}.lst-kix_wvx8hu4gm1uj-2 > li:before{content:"■ "}.lst-kix_2ffinenr8m70-7 > li{counter-increment:lst-ctn-kix_2ffinenr8m70-7}.lst-kix_2ffinenr8m70-4 > li{counter-increment:lst-ctn-kix_2ffinenr8m70-4}.lst-kix_9mitsmlx4h3o-1 > li{counter-increment:lst-ctn-kix_9mitsmlx4h3o-1}.lst-kix_wvx8hu4gm1uj-7 > li:before{content:"○ "}.lst-kix_9mitsmlx4h3o-4 > li{counter-increment:lst-ctn-kix_9mitsmlx4h3o-4}.lst-kix_naw8ljaj8cmi-8 > li{counter-increment:lst-ctn-kix_naw8ljaj8cmi-8}.lst-kix_wvx8hu4gm1uj-5 > li:before{content:"■ "}.lst-kix_wvx8hu4gm1uj-6 > li:before{content:"● "}ol.lst-kix_9mitsmlx4h3o-6.start{counter-reset:lst-ctn-kix_9mitsmlx4h3o-6 0}.lst-kix_wvx8hu4gm1uj-3 > li:before{content:"● "}.lst-kix_wvx8hu4gm1uj-4 > li:before{content:"○ "}ol.lst-kix_9mitsmlx4h3o-3.start{counter-reset:lst-ctn-kix_9mitsmlx4h3o-3 0}.lst-kix_9mitsmlx4h3o-6 > li{counter-increment:lst-ctn-kix_9mitsmlx4h3o-6}ol.lst-kix_naw8ljaj8cmi-5.start{counter-reset:lst-ctn-kix_naw8ljaj8cmi-5 0}.lst-kix_naw8ljaj8cmi-5 > li{counter-increment:lst-ctn-kix_naw8ljaj8cmi-5}.lst-kix_2ffinenr8m70-5 > li:before{content:"" counter(lst-ctn-kix_2ffinenr8m70-5,decimal) ". "}.lst-kix_2ffinenr8m70-6 > li:before{content:"" counter(lst-ctn-kix_2ffinenr8m70-6,lower-latin) ". "}ol.lst-kix_2ffinenr8m70-7.start{counter-reset:lst-ctn-kix_2ffinenr8m70-7 0}ol.lst-kix_2ffinenr8m70-1.start{counter-reset:lst-ctn-kix_2ffinenr8m70-1 0}.lst-kix_2ffinenr8m70-3 > li{counter-increment:lst-ctn-kix_2ffinenr8m70-3}.lst-kix_2ffinenr8m70-4 > li:before{content:"" counter(lst-ctn-kix_2ffinenr8m70-4,lower-roman) ". "}.lst-kix_2ffinenr8m70-8 > li:before{content:"" counter(lst-ctn-kix_2ffinenr8m70-8,decimal) ". "}.lst-kix_9mitsmlx4h3o-0 > li{counter-increment:lst-ctn-kix_9mitsmlx4h3o-0}.lst-kix_2ffinenr8m70-7 > li:before{content:"" counter(lst-ctn-kix_2ffinenr8m70-7,lower-roman) ". "}.lst-kix_9mitsmlx4h3o-4 > li:before{content:"" counter(lst-ctn-kix_9mitsmlx4h3o-4,lower-roman) ". "}ol.lst-kix_9mitsmlx4h3o-4.start{counter-reset:lst-ctn-kix_9mitsmlx4h3o-4 0}ol.lst-kix_naw8ljaj8cmi-6.start{counter-reset:lst-ctn-kix_naw8ljaj8cmi-6 0}.lst-kix_9mitsmlx4h3o-6 > li:before{content:"" counter(lst-ctn-kix_9mitsmlx4h3o-6,lower-latin) ". "}.lst-kix_2ffinenr8m70-0 > li:before{content:"" counter(lst-ctn-kix_2ffinenr8m70-0,lower-latin) ". "}.lst-kix_9mitsmlx4h3o-2 > li:before{content:"" counter(lst-ctn-kix_9mitsmlx4h3o-2,decimal) ". "}.lst-kix_9mitsmlx4h3o-5 > li:before{content:"" counter(lst-ctn-kix_9mitsmlx4h3o-5,decimal) ". "}ol.lst-kix_9ycbvglffw5i-0{list-style-type:none}.lst-kix_2ffinenr8m70-1 > li:before{content:"" counter(lst-ctn-kix_2ffinenr8m70-1,lower-roman) ". "}.lst-kix_2ffinenr8m70-2 > li:before{content:"" counter(lst-ctn-kix_2ffinenr8m70-2,decimal) ". "}ol.lst-kix_9ycbvglffw5i-1{list-style-type:none}ol.lst-kix_9ycbvglffw5i-2{list-style-type:none}ol.lst-kix_9ycbvglffw5i-3{list-style-type:none}ol.lst-kix_9ycbvglffw5i-4{list-style-type:none}ol.lst-kix_9ycbvglffw5i-8.start{counter-reset:lst-ctn-kix_9ycbvglffw5i-8 0}ol.lst-kix_9mitsmlx4h3o-0{list-style-type:none}.lst-kix_2ffinenr8m70-3 > li:before{content:"" counter(lst-ctn-kix_2ffinenr8m70-3,lower-latin) ". "}ol.lst-kix_9ycbvglffw5i-5{list-style-type:none}ol.lst-kix_9mitsmlx4h3o-1{list-style-type:none}ol.lst-kix_9ycbvglffw5i-6{list-style-type:none}.lst-kix_9mitsmlx4h3o-3 > li:before{content:"" counter(lst-ctn-kix_9mitsmlx4h3o-3,lower-latin) ". "}.lst-kix_9ycbvglffw5i-1 > li:before{content:"" counter(lst-ctn-kix_9ycbvglffw5i-1,lower-roman) ". "}ol.lst-kix_9ycbvglffw5i-7{list-style-type:none}ol.lst-kix_9ycbvglffw5i-8{list-style-type:none}ol.lst-kix_9mitsmlx4h3o-4{list-style-type:none}ol.lst-kix_9mitsmlx4h3o-5{list-style-type:none}ol.lst-kix_9mitsmlx4h3o-2{list-style-type:none}ol.lst-kix_2ffinenr8m70-8.start{counter-reset:lst-ctn-kix_2ffinenr8m70-8 0}.lst-kix_9ycbvglffw5i-2 > li:before{content:"" counter(lst-ctn-kix_9ycbvglffw5i-2,decimal) ". "}ol.lst-kix_9mitsmlx4h3o-3{list-style-type:none}.lst-kix_9ycbvglffw5i-3 > li{counter-increment:lst-ctn-kix_9ycbvglffw5i-3}ol.lst-kix_9mitsmlx4h3o-8{list-style-type:none}.lst-kix_9ycbvglffw5i-6 > li{counter-increment:lst-ctn-kix_9ycbvglffw5i-6}ol.lst-kix_9mitsmlx4h3o-6{list-style-type:none}.lst-kix_9ycbvglffw5i-3 > li:before{content:"" counter(lst-ctn-kix_9ycbvglffw5i-3,lower-latin) ". "}ol.lst-kix_9mitsmlx4h3o-7{list-style-type:none}.lst-kix_9mitsmlx4h3o-8 > li:before{content:"" counter(lst-ctn-kix_9mitsmlx4h3o-8,decimal) ". "}.lst-kix_9ycbvglffw5i-4 > li:before{content:"" counter(lst-ctn-kix_9ycbvglffw5i-4,lower-roman) ". "}.lst-kix_9ycbvglffw5i-6 > li:before{content:"" counter(lst-ctn-kix_9ycbvglffw5i-6,lower-latin) ". "}ol.lst-kix_9ycbvglffw5i-2.start{counter-reset:lst-ctn-kix_9ycbvglffw5i-2 0}.lst-kix_9ycbvglffw5i-0 > li{counter-increment:lst-ctn-kix_9ycbvglffw5i-0}.lst-kix_9mitsmlx4h3o-7 > li:before{content:"" counter(lst-ctn-kix_9mitsmlx4h3o-7,lower-roman) ". "}.lst-kix_9ycbvglffw5i-5 > li:before{content:"" counter(lst-ctn-kix_9ycbvglffw5i-5,decimal) ". "}.lst-kix_2su7wlywvg5v-4 > li:before{content:"- "}ol.lst-kix_9ycbvglffw5i-7.start{counter-reset:lst-ctn-kix_9ycbvglffw5i-7 0}.lst-kix_2su7wlywvg5v-3 > li:before{content:"- "}.lst-kix_2su7wlywvg5v-5 > li:before{content:"- "}ol.lst-kix_naw8ljaj8cmi-0{list-style-type:none}ol.lst-kix_naw8ljaj8cmi-2{list-style-type:none}ol.lst-kix_naw8ljaj8cmi-1{list-style-type:none}ol.lst-kix_naw8ljaj8cmi-4{list-style-type:none}ol.lst-kix_naw8ljaj8cmi-3{list-style-type:none}.lst-kix_2su7wlywvg5v-0 > li:before{content:"- "}.lst-kix_2su7wlywvg5v-8 > li:before{content:"- "}ol.lst-kix_2ffinenr8m70-6.start{counter-reset:lst-ctn-kix_2ffinenr8m70-6 0}.lst-kix_2su7wlywvg5v-1 > li:before{content:"- "}.lst-kix_naw8ljaj8cmi-2 > li{counter-increment:lst-ctn-kix_naw8ljaj8cmi-2}ol.lst-kix_naw8ljaj8cmi-7.start{counter-reset:lst-ctn-kix_naw8ljaj8cmi-7 0}.lst-kix_2su7wlywvg5v-2 > li:before{content:"- "}ol.lst-kix_9mitsmlx4h3o-5.start{counter-reset:lst-ctn-kix_9mitsmlx4h3o-5 0}ol.lst-kix_9ycbvglffw5i-4.start{counter-reset:lst-ctn-kix_9ycbvglffw5i-4 0}ul.lst-kix_wvx8hu4gm1uj-8{list-style-type:none}ul.lst-kix_2su7wlywvg5v-0{list-style-type:none}ul.lst-kix_wvx8hu4gm1uj-7{list-style-type:none}ul.lst-kix_wvx8hu4gm1uj-6{list-style-type:none}ul.lst-kix_wvx8hu4gm1uj-5{list-style-type:none}ul.lst-kix_wvx8hu4gm1uj-4{list-style-type:none}ul.lst-kix_wvx8hu4gm1uj-3{list-style-type:none}ul.lst-kix_wvx8hu4gm1uj-2{list-style-type:none}ul.lst-kix_wvx8hu4gm1uj-1{list-style-type:none}ul.lst-kix_wvx8hu4gm1uj-0{list-style-type:none}ul.lst-kix_2su7wlywvg5v-8{list-style-type:none}.lst-kix_9ycbvglffw5i-5 > li{counter-increment:lst-ctn-kix_9ycbvglffw5i-5}ul.lst-kix_2su7wlywvg5v-7{list-style-type:none}.lst-kix_9mitsmlx4h3o-0 > li:before{content:"" counter(lst-ctn-kix_9mitsmlx4h3o-0,lower-latin) ". "}.lst-kix_9mitsmlx4h3o-1 > li:before{content:"" counter(lst-ctn-kix_9mitsmlx4h3o-1,lower-roman) ". "}ul.lst-kix_2su7wlywvg5v-6{list-style-type:none}ul.lst-kix_2su7wlywvg5v-5{list-style-type:none}ul.lst-kix_2su7wlywvg5v-4{list-style-type:none}.lst-kix_2ffinenr8m70-0 > li{counter-increment:lst-ctn-kix_2ffinenr8m70-0}ol.lst-kix_9mitsmlx4h3o-2.start{counter-reset:lst-ctn-kix_9mitsmlx4h3o-2 0}ul.lst-kix_2su7wlywvg5v-3{list-style-type:none}ul.lst-kix_2su7wlywvg5v-2{list-style-type:none}ul.lst-kix_2su7wlywvg5v-1{list-style-type:none}ol.lst-kix_9ycbvglffw5i-1.start{counter-reset:lst-ctn-kix_9ycbvglffw5i-1 0}.lst-kix_2ffinenr8m70-1 > li{counter-increment:lst-ctn-kix_2ffinenr8m70-1}.lst-kix_naw8ljaj8cmi-0 > li{counter-increment:lst-ctn-kix_naw8ljaj8cmi-0}.lst-kix_9ycbvglffw5i-7 > li{counter-increment:lst-ctn-kix_9ycbvglffw5i-7}ol.lst-kix_naw8ljaj8cmi-1.start{counter-reset:lst-ctn-kix_naw8ljaj8cmi-1 0}.lst-kix_naw8ljaj8cmi-3 > li{counter-increment:lst-ctn-kix_naw8ljaj8cmi-3}.lst-kix_9mitsmlx4h3o-7 > li{counter-increment:lst-ctn-kix_9mitsmlx4h3o-7}.lst-kix_9ycbvglffw5i-4 > li{counter-increment:lst-ctn-kix_9ycbvglffw5i-4}ol.lst-kix_2ffinenr8m70-3.start{counter-reset:lst-ctn-kix_2ffinenr8m70-3 0}ol.lst-kix_naw8ljaj8cmi-6{list-style-type:none}ol.lst-kix_2ffinenr8m70-0.start{counter-reset:lst-ctn-kix_2ffinenr8m70-0 0}ol.lst-kix_naw8ljaj8cmi-4.start{counter-reset:lst-ctn-kix_naw8ljaj8cmi-4 0}ol.lst-kix_naw8ljaj8cmi-5{list-style-type:none}.lst-kix_2su7wlywvg5v-7 > li:before{content:"- "}ol.lst-kix_naw8ljaj8cmi-8{list-style-type:none}ol.lst-kix_naw8ljaj8cmi-7{list-style-type:none}.lst-kix_2su7wlywvg5v-6 > li:before{content:"- "}ol.lst-kix_9mitsmlx4h3o-0.start{counter-reset:lst-ctn-kix_9mitsmlx4h3o-0 0}ol.lst-kix_naw8ljaj8cmi-2.start{counter-reset:lst-ctn-kix_naw8ljaj8cmi-2 0}.lst-kix_wvx8hu4gm1uj-8 > li:before{content:"■ "}.lst-kix_naw8ljaj8cmi-7 > li:before{content:"" counter(lst-ctn-kix_naw8ljaj8cmi-7,lower-latin) ". "}.lst-kix_naw8ljaj8cmi-8 > li:before{content:"" counter(lst-ctn-kix_naw8ljaj8cmi-8,lower-roman) ". "}ol.lst-kix_naw8ljaj8cmi-8.start{counter-reset:lst-ctn-kix_naw8ljaj8cmi-8 0}.lst-kix_naw8ljaj8cmi-5 > li:before{content:"" counter(lst-ctn-kix_naw8ljaj8cmi-5,lower-roman) ". "}.lst-kix_9ycbvglffw5i-2 > li{counter-increment:lst-ctn-kix_9ycbvglffw5i-2}ol.lst-kix_2ffinenr8m70-7{list-style-type:none}ol.lst-kix_2ffinenr8m70-8{list-style-type:none}.lst-kix_9ycbvglffw5i-8 > li{counter-increment:lst-ctn-kix_9ycbvglffw5i-8}.lst-kix_naw8ljaj8cmi-6 > li:before{content:"" counter(lst-ctn-kix_naw8ljaj8cmi-6,decimal) ". "}ol.lst-kix_9ycbvglffw5i-6.start{counter-reset:lst-ctn-kix_9ycbvglffw5i-6 0}ol.lst-kix_9mitsmlx4h3o-7.start{counter-reset:lst-ctn-kix_9mitsmlx4h3o-7 0}ol.lst-kix_2ffinenr8m70-4.start{counter-reset:lst-ctn-kix_2ffinenr8m70-4 0}.lst-kix_naw8ljaj8cmi-0 > li:before{content:"" counter(lst-ctn-kix_naw8ljaj8cmi-0,decimal) ". "}ol.lst-kix_2ffinenr8m70-0{list-style-type:none}ol.lst-kix_2ffinenr8m70-1{list-style-type:none}ol.lst-kix_2ffinenr8m70-2{list-style-type:none}ol.lst-kix_2ffinenr8m70-3{list-style-type:none}ol.lst-kix_2ffinenr8m70-4{list-style-type:none}.lst-kix_naw8ljaj8cmi-1 > li:before{content:"" counter(lst-ctn-kix_naw8ljaj8cmi-1,lower-latin) ". "}ol.lst-kix_2ffinenr8m70-5{list-style-type:none}ol.lst-kix_2ffinenr8m70-5.start{counter-reset:lst-ctn-kix_2ffinenr8m70-5 0}ol.lst-kix_2ffinenr8m70-6{list-style-type:none}.lst-kix_naw8ljaj8cmi-4 > li:before{content:"" counter(lst-ctn-kix_naw8ljaj8cmi-4,lower-latin) ". "}.lst-kix_9mitsmlx4h3o-2 > li{counter-increment:lst-ctn-kix_9mitsmlx4h3o-2}.lst-kix_naw8ljaj8cmi-2 > li:before{content:"" counter(lst-ctn-kix_naw8ljaj8cmi-2,lower-roman) ". "}.lst-kix_naw8ljaj8cmi-3 > li:before{content:"" counter(lst-ctn-kix_naw8ljaj8cmi-3,decimal) ". "}ol.lst-kix_9mitsmlx4h3o-1.start{counter-reset:lst-ctn-kix_9mitsmlx4h3o-1 0}.lst-kix_naw8ljaj8cmi-7 > li{counter-increment:lst-ctn-kix_naw8ljaj8cmi-7}ol.lst-kix_9ycbvglffw5i-5.start{counter-reset:lst-ctn-kix_9ycbvglffw5i-5 0}ol.lst-kix_9mitsmlx4h3o-8.start{counter-reset:lst-ctn-kix_9mitsmlx4h3o-8 0}.lst-kix_2ffinenr8m70-2 > li{counter-increment:lst-ctn-kix_2ffinenr8m70-2}.lst-kix_9mitsmlx4h3o-5 > li{counter-increment:lst-ctn-kix_9mitsmlx4h3o-5}.lst-kix_2ffinenr8m70-5 > li{counter-increment:lst-ctn-kix_2ffinenr8m70-5}.lst-kix_9mitsmlx4h3o-8 > li{counter-increment:lst-ctn-kix_9mitsmlx4h3o-8}.lst-kix_naw8ljaj8cmi-4 > li{counter-increment:lst-ctn-kix_naw8ljaj8cmi-4}.lst-kix_2ffinenr8m70-8 > li{counter-increment:lst-ctn-kix_2ffinenr8m70-8}.lst-kix_naw8ljaj8cmi-1 > li{counter-increment:lst-ctn-kix_naw8ljaj8cmi-1}
Math 264 If you want to learn more check out What are the different types of social media?
Final Exam Study Guide
- Write down an equation of the plane passing through point P=(1,0,-2) and:
- Normal to vector n = (3,-1,2)
3(x-1)-1(y-0)+2(z+2)=0We also discuss several other topics like Define bender’s hypothesis.
3x-y+2z=-1
- Parallel to the plane -3x+2y+5z=2018
-3(x-1)+2(y-0)+5(z+2)=0
-3x+2y+5z=-13
- Consider the function f(x,y)=ln(4-x²+y)
- Find the domain of the function:
Since ln is undefined at negative value: u-x²+y>0Don't forget about the age old question of What do you mean by marginal utility?
Domain: {(x,y)|4-x²+y>0}
- Write down an equation of the level curve of the function passing through point (0,1) and sketch it:
ln(u-x²+y)=c
If you want to learn more check out What are the 5 essential personality traits?
u-x²+y=c
At (0,1): u-0+1=cDon't forget about the age old question of Why do plant-based products do not meet the legal definition of milk?
c=sIf you want to learn more check out What are the significant functions of the respiratory tract?
Equation: u-x²+y=5
y-x²+1
- Find the limit if it exists or show that it does not exist:
- lim e^-xy cos (x+y)
(x,y)➝(1,1)
lim e^-xy cos(x+y) = e^1 cos (1-1) = e^1 cos(c) = e^1
(x,y)➝(1,-1)
- lim xycosy
(x,y)➝(0,0) 3x²+y²
lim xycosy = 0/0
(x,y)➝(0,0) 3x²+y²
Along x-axis (y=0):
lim 0
(x,y)➝(0,0) 3x² = 0
Along x=y line:
lim x²cosx = x²cosx = cosx = 1/4
(x,y)➝(0,0) 3x² = 0 3x²+x² 4
- Consider a function:

- Determine a region where the function is continuous. Provide an explanation:
- for (x,y) ≠ (0,0) the function f(x,y) = x²y^3 / 2x²+y² is a continuous and differentiable function since the denominator does not vanish
- along x axis (y=0): along y axis (x=0)


So the limit:

Thus

Continuous or differentiable at (0,0)
5. Compute the partial derivative of:

b.
c. 
6. Verify that the function M =Ae^x cos y where A is an arbitrary constant, is a solution to the laplace equation:

7. If z=x²siny , x = t and y = t^3. Find dz/dt:

8. Consider the function f(x,y,z) = xe^(x/y) + z sin (xy) + z
- Find the directional derivative of the function in the direction of the vector v=(1,1,1) at (0,1,1)
Definition: 


- Find the maximal rate of change of the function at point (0,1,1):

- Find the direction of the maximal rate of change at point (0,1,1):

9. Consider the surface y=x²-z². Find the equation of the tangent plane to this surface at point (4,7,3):

10. Consider the local minimum and maximum values and saddle points of the function

*three critical points: (0,0),(1,1),(-1,-1):

- D (0.0) = -16 < 0➝(0,0) is saddle point
- D (1,1) = 144-16>0, since fxx = 12 > 0 - local min
- D (-1,-1) = 144-16>0, since fxx = 12 > 0 - local min
11. Find the absolute max and absolute min value of the function f(x,y) = 2x^3 + y^4 on the domain D{(x,y)|x²+y²≤1}