×
Log in to StudySoup
Get Full Access to WSU - Study Guide - Final
Join StudySoup for FREE
Get Full Access to WSU - Study Guide - Final

Already have an account? Login here
×
Reset your password

WSU / Psychology / PSY 3040 / Where in the brain is the somatosensory cortex located?

Where in the brain is the somatosensory cortex located?

Where in the brain is the somatosensory cortex located?

Description

School: Wayne State University
Department: Psychology
Course: Psychology of Perception: Fundamental Process
Professor: Scott bowen
Term: Winter 2019
Tags: Psychology
Cost: 50
Name: final exam review
Description: cumulative notes
Uploaded: 04/22/2019
7 Pages 49 Views 2 Unlocks
Reviews


Final Exam Review


Where in the brain is the somatosensory cortex and what is its function?



Topics to Know:

Cumulative information:

1. Philosophical Groundings

a. Empiricism: knowledge from sense experience 

b. Nativism: the mind produces ideas that are not derived from external sources c. Dualism: mind has an existence separate from the material world of the body d. Monism: mind and body are the same thing.

e. Psychophysics: A study of the relationship between physical characteristics of  stimuli and our psychological experience with them.

2. Structure of neuron

a. Soma (cell body): contains cell nucleus; maintains health of cell.

b. Dendrites: “branches” that receive information from other neurons.

c. Axons: “tails” of the neuron that spread out from the cell body and transmit  information.


Where the olfactory neurons are located?



d. Axon terminal: knob at the end of the axons that contains synaptic vesicles filled  with neurotransmitters.

e. Neurotransmitters (NTs): chemical messengers that allow neuron­to­neuron  communication.

f. Synapse: space between neurons through which NTs travel

3. Gross neural anatomy

a. Cerebral cortex: cortex surface is convoluted by grooves We also discuss several other topics like What system processes food and absorbs nutrients; includes the pharynx, salivary gland, mouth, teeth, tongue, esophagus, liver, gallbladder, stomach, pancreas, small intestine, large intestine, and anus?

i. Sulci: small grooves

ii. Fissures: large grooves

iii. Gyri: bulges in cortex

iv. Divided into 4 lobes: frontal, parietal, occipital, temporal

b. Limbic system

i. Hippocampus: learning and memory

ii. Amygdala: emotion

iii. Mamillary bodies: fornix; fiber bundle that interconnects the hippocampus with mamillary bodies


How many taste receptors we have?



c. Basal ganglia: involved in control of movement

i. Globus pallidus

ii. Caudate nucleus

iii. Putamen

d. Diencephalon

i. Thalamus: receive sensory info and transmit it to cortex

ii. Hypothalamus: control of autonomic nervous system and pituitary We also discuss several other topics like What shifts the demand for bonds?

e. Pituitary gland

i. Attached to bottom of brain below hypothalamus; secretes many important neuro transmitter that on glands in periphery

f. Mesencephalon: consist of midbrain

i. Tectum: dorsal portion of midbrain; superior and inferior colliculi 

involved in visual and auditory systems

ii. Tegmentum: under tectum; rostral reticular­ sensory, arousal, sleep iii. periaqueductal gray: pain

iv. red nucleus: motor efferent

v. sunstantia nigra: fine motor control

vi. ventral tegmental area: reward

g. metacephalon

i. pons: sleep and arousal

ii. cerebellum: motor control If you want to learn more check out How did the archean cratons or shields form?

h. myelencephalon

i. medulla oblongata: control vital functions­ regulation of cardiovascular  system, breathing, skeletal muscle tone

4. Physics of light: Waves and particles

a. Light: A narrow band of electromagnetic radiation that can be conceptualized as  a wave or a stream of electrically charged particles called photons. 

b. Unit of measurement of light is wavelength 

5. Photoreceptors: what the 4 are; No questions on rhodopsin

a. Rods

b. Red cones

c. blue cones

d. green cones

6. Retina anatomy and cortical magnification: distribution of rods and cones, fovea  percentage

a. Retina is structured in three layers

i. In the outer nuclear layer, light activates photoreceptors (rods/cones).   Light easily passes through cells in front of the rods and cones because  these cells are mostly clear/transparent. Don't forget about the age old question of What is the most immediate response to cell damage?

ii. Photoreceptors send signals to horizontal and bipolar cells; and bipolar  cells synapse with amacrine cells, these three types of cells reside in the  inner nuclear layer. 

iii. Bipolar cells also synapse with ganglion cells that reside in the ganglion  cell layer. These cells have axons that leave the retina through the optic  disc (blind spot).

b. Distribution of rods and cones are not consistent over retina

c. Cone photoreceptor density is greatest in the fovea

7. Receptive fields: primary visual cortex

a. Region of sensory surface that when stimulated causes a change in firing rate of a  neuron that monitors that region on the surface

8. Perceptual organization: different grouping principles

a. Familiarity of the object

b. Image clutter in the visual scene 

c. Object variety in the world

d. Variable views of an object

e. Recognition­by­Components theory

9. IT cortex function: object perception

10. Function of color vision

a. Classify and identify objects We also discuss several other topics like Where does the money come from?
If you want to learn more check out What does the bottom-up approach focus on?

b. Facilitate perceptual organization of elements into objects

c. Provide evolutionary advantage in foraging for food

d. Provide evolutionary advantage in mating

11. Visual color disorders

12. What gets confounded by 2D and 3D 

13. Stereopsis: depth perception

14. Corollary Discharge signal functional significance

15. Motion detection

16. Sound spectrum 

a. Frequency: the number of cycles per second of a periodic waveform. b. Amplitude: the difference between the maximum and minimum sound pressure  in a sound wave.

c. Waveform: the complexity of the sound wave.

d. Pitch: The psychological correlate of frequency

e. The higher the frequency, the higher the pitch. 

f. Loudness: The psychological correlate of amplitude

g. The greater the amplitude, the greater the loudness—though loudness also  depends on other factors, like frequency.

h. Timbre: the psychological quality of a sound related                                                to its complexity 

17. Anatomy of ear

a. Outer ear: auditory canal

b. Middle ear: ossicles

i. Malleus

ii. Incus

iii. Stapes

c. Inner ear: cochlea

i. Tympanic canal

ii. Vestibular canal

iii. Cochlear duct 

iv. Reissners membrane

v. Basilar membrane

18. Auditory pathways

a. Auditory “what” pathway extends from the auditory core region into the  temporal cortex and on to the prefrontal cortex.

b. Auditory “where” pathway extends from auditory core region to the temporal  cortex and on to the parietal cortex.

c. Auditory and visual “what” and “where” pathways overlap in some areas.

d. Multimodal pathways found in parietal and frontal lobes.

19. Basics of auditory scene analysis

a. process by which sound sources in the auditory scene are separated into individual perceptions.

i. Onset time ­ sounds that start at different times are likely to come from  different sources.

ii. Location ­ a single sound source tends to come from one location and to  move continuously. 

iii. Similarity of pitch and timbre ­ similar sounds are grouped together. 20. Number of languages and phonemes

a. About 7000 languages utilizing a set of 850 diff phones

b. In English there are 45 phonemes

i. 15 major vowels

ii. 25 major consonants

21. Formants: concentration of acoustic energy around a particular frequency in speech wave Body senses, olfaction and gustation

1. Touch receptors: different types, functions and structures; basically, everything about  touch receptors

a. Type I mechanoreceptors provide fine detail about the spatial location of  stimulation because their small receptive fields give them greater spatial 

sensitivity.

b. Type 2 mechanoreceptors have larger receptive fields, giving them a lower  threshold to detection of tactile stimulation, but provide less information about the location of the stimulation.

c. Two­point threshold ­ minimum separation needed between two points to  perceive them as two units.

d. Grating acuity ­ placing a grooved stimulus on the skin and asking the  participant to indicate the orientation of the grating.

e. Raised pattern identification ­ using such patterns to determine the smallest size that can be identified

2. Where in the brain is the somatosensory cortex and what is its function? a. Somatosensory cortex located in the parietal lobe, just behind the                           central sulcus.

b. 2 main regions:

i. Primary somatosensory cortex: receives info from thalamus

ii. Secondary somatosensory cortex: receives info from S1

3. Ventral and dorsal pathways

a. Dorsal column–medial lemniscal (DCML) pathway: Carries signals from skin,  muscles, tendons, and joints (evolutionary newer and faster).

b. Spinothalamic pathway: Carries most of the information about skin temperature  and pain (slower).

c. Dorsal pathway: “where/how” pathway involves specialized areas that use tactile and proprioceptive input to provide feedback necessary for guiding actions  (gripping and grasping objects)

d. Ventral pathway: “what” pathway involves specialized areas that use tactile and  proprioceptive info to perceive object shape and recognize objects

4. Pain inhibition mechanisms: endorphins 

a. Body releases endogenous opioids (e.g., endorphins) in response to pain or stress  which inhibit many types of pain by blocking them in central nervous system  (CNS).

b. CNS contains opiate receptors that take up opioids and inhibit the release of  neurotransmitters that are released by neurons carrying pain, reducing the  perceived intensity of pain.

5. Phantom limbs: Sensation perceived from a physically amputated limb of the body. 6. Tactile agnosia: inability to recognize objects by touch

7. Age vs olfaction: Odor recognition begins to decline at age 60 with fall off being greatest  after 70. By 90 most men and many women are anosmic­ they have lost their ability to  smell

8. Adaptation and cross adaptation

a. Adaptation to an odorant occurs when we have been in the presence of the  odorant for a short time

b. Cross­adaptation: The reduction in detection odorant following previous  continuous or repeated exposure to other odorants that are chemically or  perceptually similar.

9. Anatomy of nose

a. Behind each nostril are 3 to 4 turbinate’s, small bony convolutions of tissue  protruding into the nose, that direct a small part of each breath (and the odorants it may contain) upward through the olfactory cleft, dispersing air evenly throughout  the nasal cavities.

b. Olfactory cleft: a narrow space at the back of the nose into which air flows, where the olfactory epithelium is located

c. Olfactory epithelium: a patch of tissue in the upper reaches of the nasal cavity  whose primary function is to detect odorants in inhaled air; retina of the nose i. Supporting cells: provide physical support for the olfactory receptor  neurons

ii. Basal cells: precursor cells to olfactory receptor neurons

iii. Olfactory receptor neurons (ORNs): the main cell type in olfactory  epithelium

10. Know where the olfactory neurons are located 

11. Cell olfactory location

12. Know how many olfactory sensors we have 

13. Population code: we can distinguish around 350 smells

14. Know location of primary olfactory cortex (piriform cortex) and pathway; know what  structures link together: Doesn’t got through the thalamus

a. Anterior piriform cortex: Represents detailed features of chemical structures of  odorants. Involved in identifying specific odorants (individually or as components of odor “objects”).

b. Posterior piriform cortex Represents holistic quality of odorants. c. Involved in recognizing odors of “objects” that can be named and have long­term  memory representations. Responds to perceptual categories of odors even if  structures are different (e.g., citrus odors).

15. Neural representation for odorant molecules

16. Memory and olfaction: very strong memories associated with olfaction 17. Nasal and olfactory system: do other mammals have them?

18. Function of orbitofrontal cortex

a. Along with other olfactory cortical areas, evolved out of structures dedicated to  original first sensory system, sense of smell.

b. Now, responsible for

i. Conscious experience of olfaction.

ii. Assigning positive or negative affective value to odors as well as other  stimuli (i.e., is the stimulus rewarding or unpleasant). 

19. Function of 5 taste receptors: 

a. Sweet – source of energy (carbs)

b. Salty – salt 

c. Bitter – potentially toxic

d. Sour – potentially toxic

e. Umami – protein (described as meaty, brothy or savory and associated with  MSG

20. Distinction between taste and flavor: Taste combines with the olfactory system to create  the multi­sensory experience of flavor

a. Flavor: The combination of true taste (sweet, salty, umami, bitter, and sour) plus  retronasal olfaction

21. Trigeminal sense

22. Where most taste buds are located

23. How many taste receptors we have

a. Two types:

i. Receptor cells: transduce sweet, umami, and bitter tastants

ii. Presynaptic cells: transduce salty and sour tastants

24. T1­ R1 pairings and what receptors activate them

a. Sweet receptors: T1R2­T1R3 protein structures

b. Umami receptors: T1R1­T1R3 protein structures

c. Bitter: pairs of T2R(x) protein structures

25. Label lined model and across fiber model

a. Labeled lines model: theory of taste coding in which each cranial nerve fiber and  cortical taste neuron represents a particular taste quality.

b. Across­fiber pattern model: theory that patterns of activity across different cranial nerve fibers and across different cortical taste neurons code taste quality

26. Super tasters: Individual who is a taster of PTC and has a high density of fungiform  papillae.

27. Adaptation

a. Taste sensitivity is reduced after continuous exposure to a particular stimulant. b. Tastants from one basic taste (e.g., sweet) do not reduce sensitivity to other basic  tastes (e.g., sour).

28. Cross­adaptation 

a. Cross­adaptation between similar tastants can occur.

b. Different type of cross­adaptation occurs when adaptation to one basic taste  enhances the salience of other basic tastes. 

29. The different papillae

a. Filiform papillae: small structures on the tongue that provide most of the bumpy  appearance; have no taste function; provide texture information.

b. Fungiform papillae: tiny mushroom shaped structures distributed most densely on  the edges along the front of the tongue; an average of 3­5 taste buds per papilla  buried in the surface

c. Foliate papillae: folds of tissue containing taste buds; on the sides of the tongue  near the back; each contains a few hundred taste buds

d. Corcumvallate papillae: large mushroom shaped structures that form a row on the  rear of the tongue; they each contain 200­700 taste buds around their sides 30. Gustation process: no axons, uses ATP

31. Cell to cell signaling

32. Gustation pathway in brain

33. Primary taste cortex

34. Sensory specific satiety

Page Expired
5off
It looks like your free minutes have expired! Lucky for you we have all the content you need, just sign up here