Log in to StudySoup
Get Full Access to JMU - Study Guide - Final
Join StudySoup for FREE
Get Full Access to JMU - Study Guide - Final

Already have an account? Login here
Reset your password

JMU / Anthropology / ANTH 196 / Anthropology is a study of what?

Anthropology is a study of what?

Anthropology is a study of what?


School: James Madison University
Department: Anthropology
Course: Biological Anthropology
Professor: Joshua linder
Term: Spring 2019
Cost: 50
Name: ANTH 195 Final Exam!!
Description: This is everything that will be on the final!!
Uploaded: 04/24/2019
54 Pages 289 Views 7 Unlocks

dylanmbaker3 (Rating: )

ridiculously overpriced, quizlets free

skeltoka (Rating: )

ANTH 196 

Anthropology? is a study of what?

Exam #1 Study Guide!  

Chapter #1  

1. What is Anthropology? 

a. Cultural Anthropology

i. Largest of the 4 subfields

∙ 2:1 ratio

∙ Studying living populations in terms of their culture

ii. Ethnology

∙ Documentation of societies of how they were raised  

and what their culture is.

a. Studying living culture.

b. Linguistic Anthropology

i. Smallest field

∙ Interested in language in culture

a. Technical ways of analyzing

c. Archaeology

i. Looking at past humans cultures

∙ Look at material remains

a. Trying to understand past behaviors

Cultural anthropology is the study of?

ii. Ethnoarchaeology


∙ Learn more about how archaeology sites are formed 

d. Genetic Anthropology

i. Gene frequencies across populations

∙ Mitochondrial DNA and Y-chromosome studies

a. Molecular clouds

ii. Ancient human DNA

∙ Extracting DNA from skeletal remains

e. Biological Anthropology

i. Very diverse

∙ Taking techniques in theoretical approach of humans  

with biology

a. Skeletal remains, human evolution

f. The Scope of biological anthropology

i. Geographic variation

∙ Adaptations to cold heat, high altitude

ii. Genetic adaptation in physiological plasticity

Linguistic anthropology means what?

∙ Growth and development

∙ Evolutionary medicine

g. Archaeology and Ancient human Variation

i. Human osteology

∙ Paleodemography  

a. Age, sex, profices


∙ Paleopathology We also discuss several other topics like What components in our atmosphere have offset the effects of a less bright sun toward maintaining liquid water at our surface over most of earth's history?

a. Disease in past populations

ii. Discrete traits

∙ Characteristics that are present or absent.

Chapter #2

2. What is Science? The History through Evolutionary Thought  part 1. 

A. Primatology

a. Study of non human primates

B. Paleoanthropology

a. Human evolutionary studies

i. Lots of information comes from archeological techniques C. Six Attributes of Science

a. Natural

i. Natural world

b. Observable

c. Predictable

i. Falsifiable

d. Testable

e. Consistent

i. repeatability

f. Tentative


D. The Scientific Method 

a. Observation

b. Hypothesis

i. Testable predictions

c. Hypothesis testing

i. Experiment or further observations

d. Reject or provisionally accept hypothesis

e. Theory

i. Not just a hypothesis; but multiple

E. Plato(400s BCE) Don't forget about the age old question of What is the non-tariff barriers?

a. Eidos or ideal types

b. Made observations of plant and animal species around him and  he determined that there was variation Don't forget about the age old question of What are the principles of oncologic surgery?

c. Developed the theory of forms

i. Allegory of the cave

ii. The forms would be the essence of many objects

F. Aristotle(400s BCE)

a. Plato's student

b. Fixity of Species

c. First to notice that there is no continued variation in nature i. Unchanging nature

d. Essential fixed status of behavior

4We also discuss several other topics like What is peridotite?

e. Noticed that organisms are more complex than others f. Scala naturae

i. Scale of nature

1. How we organized organisms

g. Had a material reality

h. The Great Chain of Being

i. Immutable and unchanging

1. A lot like scala naturae

2. Angels are at top of chain

3. Organisms were ranked according to similarity  

because humans are made in the image of God

G. Young Earth

a. Bishop Usher(1581-1656)

i. Came up with the 1st representation of the age of the  Earth

1. Determined the Earth was about 6,000 years old.

H. 17th -19th Century Naturalists

a. The wanted to better understand God's Plan

b. Study of nature; a Godly pursuit

c. Great chain of being was still very influential to people I. John Ray

a. Contributed the concept of reproductive We also discuss several other topics like How can organisms too small to be seen with the naked eye kill human a million times larger?


i. 1691 was his most famous publication 

ii. Species concept creator  

iii. 1st person to use this

J. Linnaeus(1707-1778)

a. Figured out how to identifying species based on a “killing  feature”  

i. Species classification creator

ii. Systema naturae

1. First classification of organisms

iii. Created the idea of binomial naming clature

iv. The combination of the name has to be unique

v. Conceptualized higher levels of classification

1. Classes, order, kingdoms, etc

vi. First to place animals in to a genus of humans

K. Comte De Buffon(1707-1788)

a. Uniformitarianism thought

i. Ambitious naturalist We also discuss several other topics like What is the absolute magnitude of the brightest star, sirius?

ii. He was interested in ancient Earth

1. Took on ideas from Newton to determine a physical  

way of how the Earth was formed

iii. He argues that the earth was more the 70,000 years old. L. Fossils


a. It was initially just another type of rock and geological formation 

i. Then naturalists began to make connections between  fossils and living organisms due to many similarities

1. Brought up the idea that a change must have  



a. This was not supposed to happen under the Great Chain of Being

i. So this brought up a challenge because it challenged the  fixity of species

1. Scientists responded with Catastrophism

a. Cuvier (1769-1832)- 1st person to point to  

fossils as evidence of extinction; he studied  

elephant fossils

N. Inheritance of Acquired Characteristics

a. Lamarck(1744-1829); came up with a frame work that is known  as evolutionary change today

i. Inheritance of acquired characteristics was also known as  the use with use hypothesis.

O. Uniformitarianism

a. James Hutton (1726-1797) and Charles Lyell (1797-1875)

i. Processes have been happening many years, influenced  Lyell's theory

b. 1830- Charles Lyell published 1st edition of Principles of Geology i. Catastrophism Idea

ii. “The present is the key to the past”


iii. Geological science should limit itself to natural world P. Evolutionary Theory: Development of Natural Selection a. Evolution= change through time  

i. Descent with modification

b. Species here today were not always in existence  

c. Species share common ancestors

Q. Charles Darwin (1809- 1882)

a. Natural Selection

b. Wanted to be loved by the outdoors/nature

c. Boarded the Beagle at the age of 22 to be the boats naturalist R. Natural Selection Influences:

a. Beagle voyage

i. 1831-1836

1. Easily intended to be a 2 year voyage, but ended up  

taking 5 years

ii. When he first started encountering fossils and certain  patterns that went along where species lived

iii. Most famous observations were on the different kinds of  finches

iv. Gave the idea that there was change within lineage

b. Breeding of Domestic Animals:Pigeons

i. Breeding show pigeons

1. Offspring tended to resemble their parents


c. Malthus: “Essay on Population” 

i. Struggle for survival or existence

1. Most extensive, influential view of this idea

ii. Populations tend to expand to outstrip resources 1. Brought the idea of competition in evolution

S. 3 Key Patterns from Darwin’s Observations of Natural  Selection

a. Variation is the Norm

i. Beagle voyage

b. Variation is inherited; artificial selection

i. Domestic animal breeding

c. Overproduction of offspring

i. Malthus

T. Kinds of Natural Selection

a. Directional Selection

i. What produces adaptive change in population

1. When the environment favors one variant of a  

particular trait over the rest (situational).

2. Ex. pigmentation in peppered moths

b. Stabilizing Selection

i. Decreases diversity, acts against extremes

ii. In favor of typical or average trait, not the extremes 9

1. Ex. a four-chamber heart in humans and animals 

c. Disruptive Selection

i. Favoring extremes; acting against the norm

1. Sexual dimorphism

U. Sexual Selection

a. Selection driven by competition for mates

i. Acts on an animal's ability to obtain a male

b. Darwin: the descent of man and selection in Relation to  Sex(1871)

i. Sexual selection can produce extreme results

Chapter #3

3. Is Evolution on Trial? (Scientific and Nonscientific) a. Microevolution

i. Gradual evolutionary change within a lineage or population b. Macroevolution

i. Emergence of a new species and extinction

∙ Large-scale events

c. On The Origin of Species

i. 1st major work on evolution by Darwin

ii. Was rushed to publish material by John Wallace

∙ Provided a large amount of data demonstrating the  

fact of evolution

∙ Proposed natural selection as the mechanism by  


which evolution occurs

d. Thomas Henry Huxley

i. 1st to discover evolution in humans

∙ Evidence as to man’s place in nature

∙ Trying to expand on what Linnaeus had implied

∙ Made the argument that the living apes and humans  

come from same ancestor

ii. Darwin then picked up on human evolution in his second  publication  

∙ Felt that our early ancestors should be found in Africa

a. Applying evolution to humans was very  


e. Non-scientific ways of humans evolved

i. Biblical: Genesis

∙ God created man and woman out of man

∙ Humans were created in the image of God

ii. Yanomami -South America

∙ Consists of 4 layers

a. Empty

b. The sky- 1st beings and yanamono souls

c. The earth

d. Village of spirit-men

iii. Maya-Central America


∙ Creator gods(polytheistic), fashioned all wild animals  

into their specific place in nature

a. 1st attempt was to make man out of mud

b. 2nd attempt involved use of wood(not good)

i. Caused the creation of monkeys

c. Last attempt was to use corn

i. These were the best creation animals

iv. Maasai-East Africa

∙ Creator God made people from a tree that was split  

into 3 pieces

a. Made 3 fathers of different neighboring groups

Chapter #4

4. What are the Basics of Inheritance? 

a. Darwin’s Missing Piece

i. Traits that are unhelpful or detrimental to individuals  

ii. Don’t understand how individuals inherited traits

iii. Homunculus

∙ Tiny person inside a sperm

b. Lamarck

i. Inheritance of acquired characteristics

ii. Taking notes on structures being used and discussed

iii. Passed down into sex sperms

c. Blending Inheritance


i. Idea that offspring are blended with mother and father  traits

∙ Can observe in offspring

ii. Only occurs, if natural selection is not possible

iii. Populations begin to look uniform over time

iv. Traits would skip over generations

∙ Doesn’t happen with blending inheritance

d. Gregor Mendel(1823-1884)

i. “The Gardening Monk”

ii. Conducting plant breeding characteristics

∙ Key principles of basic inheritance

∙ Not recognized during his time

∙ Experimental organism was a pea plant

iii. Parents pass on discrete heritable factors-genes

∙ Not blending

iv. Traits are inherited independently

∙ Doesn’t tell you how it will express another trait

e. Mendel's Experiments

i. Experimental organism:Peas

∙ Able to control sexual behavior

a. which plants are the parents

∙ Traits are simple-two possibilities


ii. Control of fertilization

∙ Brush pollen on target plant

∙ Data somewhat cleaner

iii. True-breeding lines

∙ 7 traits

∙ Can breed over generations, to the express that trait  


∙ Plants he was breeding only had one variant that he  

was intended in

iv. Kept basic statistical records

∙ Discrete traits

a. Discontinuous; observe traits

∙ Opposite is continuous trait

a. Height in humans

∙ Phenotype

a. Physical trait produced

i. Particles of inheritance separate from  

each other

v. Gene Variants

∙ Alleles

vi. Genotype

∙ Alleles present for a given; there will always be two  

alleles per gene in each individual  


vii. Gametes

∙ Sex cells

viii. Heterozygous

∙ Different genes (dominant and recessive)

ix. Homozygous

∙ Same genes (dominant and dominant or recessive  

and recessive)

x. Mendelian traits

∙ Traits being inherited in a single fashion

f. Two important mendelian principles

i. Law Segregation

∙ Each trait is determined by two alleles, one from  

mother and one from father, which are inherited  


a. Parallel alleles (on chromosomes) segregate  

randomly into gametes

ii. Law of Independent Assortment

∙ Each allele pair is inherited independently  

a. They are assorted independently during  

gamete formation

i. This only holds true for genes on  

different chromosomes

g. ABO Blood Groups

i. Type A


∙ Plasma antibodies (anti-B)

ii. Type B

∙ Plasma antibodies (anti-A)

iii. Type AB

∙ Plasma antibodies (none)

iv. Type O

∙ Anti A and Anti B

h. Codominance

i. A and B alleles in blood type

i. Recessive

i. O alleles in blood type

j. Beyond Medel

i. Polygenic traits

∙ Continuous traits

ii. Pleiotropic genes

∙ Gene with multiple effects of phenotypes

a. Ex. achondroplasia and marfan syndrome

iii. Heritability and environmental influence

∙ Polygenic traits

a. Height and BMI

∙ Mendelian Traits

a. PKU, G6PD deficiency (X-linked)


Chapter #5

5. What is DNA and Inheritance? 

a. T.H. Morgan(1910)

i. Did experiements on fruit flys

∙ “You can have evolution or genetics, and I have  

genetics in my lab”

b. H.J. Muller(1890-1967)

i. Also worked with fruit flys

∙ He would x-ray them and noticed interesting things  

about their offspring

ii. He indused mutations in fruit flys

∙ A source of unpredictable variation

a. Noticed that the number and shape of eyes  


c. The Modern Synthesis:

i. Medelian genetics+ mutation+natural selection

d. 1940s-1950s:

i. Structure of DNA

∙ Rosalind Franklin produced micrographic images  

showing what DNA would look like

a. But failed to get credit because of the time  


∙ Watson and Crick got all the credit and won a noble  

peace prize in 1943


ii. Haploid:

∙ 23 single chromosomes(gametes)

iii. Diploid

∙ 23 chromosomes pairs(nucleus)

e. Human Chromosomes

i. We organize and number them from biggest ot smallest ∙ Karotype:

a. The structure of chormosomes in a human and  

what they look like

∙ Autosomes

a. Chromosomes 1-22

f. DNA Structure:

i. Made up of chains; like aladder

∙ A double helix

ii. Four bases

∙ Adenine

∙ Guanine

∙ Cystonine

∙ Thymine

iii. Backbone

∙ Sugar+phosphate

a. Adenine+ Thymine (A+T or T+A)


b. Guanine +Cystosine (C+G or G+C)

iv. Nuclesomes:

∙ What the DNA wraps/winds itself around

g. Genes

i. A sequence of DNA that codes for a protein or part of a  protein

h. DNA Function

i. Replication

∙ Faithful transmission of genetic information during  

cell division

a. Two situations

i. Mitosis and meiosis


ANTH 196 

Exam #2 Study Guide!  

1. What is DNA and Inheritance? 

a. T.H. Morgan(1910)

i. Did experiments on fruit flies

∙ “You can have evolution or genetics, and I have  

genetics in my lab”

b. H.J. Muller(1890-1967)

i. Also worked with fruit flies

∙ He would x-ray them and noticed interesting things  

about their offspring

ii. He induced mutations in fruit flies

∙ A source of unpredictable variation

a. Noticed that the number and shape of eyes  


c. The Modern Synthesis:

i. Mendelian genetics mutation+natural selection

d. 1940s-1950s:

i. Structure of DNA

∙ Rosalind Franklin produced micrographic images  

showing what DNA would look like

a. But failed to get credit because of the time  



∙ Watson and Crick got all the credit and won a nobel  

peace prize in 1943

ii. Haploid:

∙ 23 single chromosomes(gametes)

iii. Diploid

∙ 23 chromosomes pairs(nucleus)

e. Human Chromosomes

i. We organize and number them from biggest to smallest ∙ Karyotype:

a. The structure of chromosomes in a human and  

what they look like

∙ Autosomes

a. Chromosomes 1-22

f. DNA Structure:

i. Made up of chains; like a ladder

∙ A double helix

ii. Four bases

∙ Adenine

∙ Guanine

∙ Cystonine

∙ Thymine


iii. Backbone

∙ Sugar+phosphate

a. Adenine Thymine (A+T or T+A)

b. Guanine +Cytosine (C+G or G+C)

iv. Nucleosomes:

∙ What the DNA wraps/winds itself around

g. Genes

i. A sequence of DNA that codes for a protein or part of a  protein

h. DNA Function

i. Replication

∙ Faithful transmission of genetic information during  

cell division

a. Two situations

i. Mitosis and meiosis

ii. Pre-Mitosis (interphase):

∙ DNA is in chromatin form 

∙ chromosomes condense with the help of proteins to make  

structures we see in replicating cells; keeps them from  

tangling up while dividing 

iii. Mitosis Begins

∙ prophase; the DNA is replicated right before 

∙ when the chromatin forms up into chromosomes, each one  

will now have two sister chromatids attached to each other 


∙ THEN: 

a. metaphase; the chromosomes line up at the center of  

the cell and the chromatids are pulled apart to make  

daughter cells that are exact copies of parent cells 

iv. Meiosis 

∙ makes sex cells; a two step process (meiosis division 1 and  


∙ sister chromatids line up at center of cell and the  

chromosomes are separated and then are pulled apart;  

∙ results in 4 gametes with 1/2 the original number of  


v. Individual Assortment 

∙ Independent segregation of genes during the formation of  


vi. Recombination 

∙ crossing over 

∙ a part of chromosome A switched with a part of  

Chromosome B 

∙ more variation for selection to act upon and you get new  

combinations of genes not new genes in general 

vii. Protein Synthesis 

∙ production of the tissues, hormones, enzymes, etc; that build 

bodies and allow them to run 

viii. Aspects of Protein Synthesis 

∙ Gene­ section of DNA coding for a protein 


∙ Exon­ coding DNA 

∙ Intron­ non­coding DNA 

∙ RNA­ single strand of genetic material; U instead of T 

a. every amino acid is specified by 3 base pairs 

ix. Transcription 

∙ (genetics) the organic process whereby the DNA sequence  

in a gene is copied into mRNA 

x. Translation: 

∙ in ribosomes, where the mRNA meets up with tRNA to  

create proteins/ string of amino acids 

xi. Ribosomes: 

∙ Makes Proteins 

2. What are the Evolutionary Forces? 

a. Mutation­ A change in a gene or chromosome. 

i. Point Mutation 

∙ gene mutation in which a single base pair in DNA has been  


ii. Deletion: 

∙ A change to a chromosome in which a fragment of the  

chromosome is removed. 

iii. Duplication 

∙ change to a chromosome in which part of the chromosome  

is repeated 


iv. Inversion 

∙ DNA strand breaks and inverts and then reattaches 

v. Translocation 

∙ The process in which a segment of a chromosome breaks  

off and attaches to another chromosome. 

vi. Genome Mutation 

∙ most common; when entire chromosome is deleted or  

duplicated; can't be passed on 

vii. Mutations can: 

∙ have no effect on protein (neutral) 

∙ have a devastating (large or small) effect 

∙ have a positive effect 

b. Genetic Drift 

i. A change in the allele frequency of a population as a result of  chance events rather than natural selection. 

ii. Founder Effect 

∙ a small population leaves and "founds" a new population  

∙ may account for high frequency of genetic diseases in  

isolated populations 

iii. Genetic Bottleneck 

∙ the breeding of population of a whole species narrows and  

becomes smaller for a portion of time; elephant seals 

c. Gene Flow 


i. movement of alleles from one population to another 

ii. Migration 

∙ Species moving from one population group to the next 

iii. Ad Mixtures 

∙ when just the genes are moving from one population to the  

next; can increase or decrease variation 

3. What is Macro Evolution? 

a. What is a Species?

i. a group of living organisms consisting of similar individuals capable  of exchanging genes or interbreeding 

b. Biological Species Concept 

i. relies on reproductive isolation 

ii. group of natural populations 

iii. capable of interbreeding(doesn't have to, but can) 

iv. reproductively isolated from other such groups 

c. Reproductive Isolation Mechanism 

i. you can have populations look so different, but genetically are more similar than we expected 

ii. Types: 

∙ premating and postmating 

iii. Premating­ 

∙ habitat isolation, temporal isolation, behavioral isolation 


iv. Post­mating­ 

∙ zygote incompatibility, inviability, and sterility 

d. Alternative Species Concepts 

i. Evolutionary species concept (chronospecies, paleospecies) ii. Ecological species concept 

iii. Recognition species concept 

e. Anagenetic Speciation (anagenesis) 

i. Gradual evolutionary change in a lineage 

ii. Accumulation of variation 

iii. New species produced in the lineage 

f. Cladogenetic Speciation (cladogenesis) 

i. Branching of new species from ancestor 

ii. Multiple species "simultaneously" 

iii. Ancestral species may or may not continue to exist after the  cladogenetic event 

g. Process of Speciation 

i. allopatric:  

∙ geographic isolation  

ii. parapatric:  

∙ adjacent populations with hybrid zone 

iii. sympatric:  


∙ within a single geographic area (not usually in nature) 

h. Tempo of Evolution I: Phyletic Speciation­slow 

i.  Small changes accumulate 

ii. Microevolution to macroevolution 

iii. Paleospecies 

iv. Implies anagenetic speciation mostly 

v. Problem: gaps in fossil record 

i. Tempo of Evolution II: Punctuated Equilibrium 

i. Species usually phenotypically stable 

ii. Rapid change in sub­population 

iii. Quick replacement of parent population 

iv. Too fast for transitional forms to be preserved geologically v. Implies cladogenetic speciation 

j. Classification and Macroevolution 

i. Large­scale change and its implications 

ii. classification: taxonomy 

iii. species the only "natural" unit 

iv. based on similarities 

k. Homology 

i. similarity resulting from common ancestry 

∙ ex: bat wings and forelimbs of a mouse 


l. Homoplasy (Analogy) 

i. similar due to adaptation 

∙ ex: wings between birds and butterflies 

m. Parallel Evolution 

i. Two related species that have made similar evolutionary  

adaptations after their divergence from a common ancestor 

n. Adaptive Radiation 

i. Rapid speciation to fill niches 

ii. Fast increase in number of related species 

∙ ex: mass­ extinction of a species 

o. Primitive/Ancestral 

i. similar to ancestral condition 

p. Derived 

i. different from ancestral condition; not absolute terms 

q. Cladistics 

i. collecting the data to figure out characteristics and to work out any  similarities and differences 

∙ Cladogram­ Diagram that shows the evolutionary  

relationships among a group of organisms 

4. What is Microevolution? 

a. Smaller­scale evolutionary change within species 

b. Population genetics 


i. ex: peppered moths 

c. Evolution of Lactose Intolerance 

i. Ability to digest milk in adulthood 

ii. Absent in most mammals 

iii. Present in (some) humans 

iv. Why­ 

∙ Dairying to Lactose Tolerance (1st began in middle east) 

d. Population Genetics 

i. Genetic variation within and between populations 

ii. Polymorphism:  

∙ multiple alleles (at least two, 1% frequency or higher) 

iii. Polymorphic traits:  

∙ different frequencies in different populations 

e. Hardy­Weinberg Equilibrium 

i. Genetic Stability 

f. Ideal Population 

i. Infinitely large 

ii. Random mating 

iii. No evolutionary process occurring 

g. Hardy­Weinberg Equilibrium: Alleles 

i. p = frequency of allele A 


ii. q = frequency of allele a 

iii. p = probability of randomly selecting A 

iv. q = probability of randomly selecting a 

v. p + q = 1, or 100% of the total alleles 

h. Hardy­Weinberg Equilibrium: Genotypes 

i. Probability of AA = prob (eggA) * prob (spermA) = p2 

ii. Probability of aa = prob (egga) *prob (sperma) = q2 

iii. Probability of Aa: prob(eggA) prob(sperma) +  

prob(egga)prob(spermA) = pq + pq = 2pq 

iv. p2 + 2pq + q2 = 1 

i. Rh (Rhesus) Antigens 

i. plus and minus in blood type; refers to rhesus antigens  

∙ (positive= you have it, negative= you don't have it) 

5. How do we Differentiate Primates from one another? 

a. Non­ Human Primates: Introduction

i. Give insight to own adaptations

ii. Pointed to as an examples of how ancestors might have behaved iii. Always debateable

∙ Gorilla­ largest nonhuman primate

b. What is a Primate? Primate Evolutionary Trend: i. Skeletal and locomotion


∙ Generalized skeleton-tend not to have extreme  

specialization in skeleton  

∙ Overall commonalities

ii. Diet and teeth

iii. Primate senses

iv. Brains and social behaviors

c. Group 1: Generalized Skeleton and Locomotion

i. Prehistoric hands and feet

∙ Have touchpads on our fingerprints and fingertips

a. Enhance dexterity

b. Give us a strong grip

∙ Tend to have nails; instead of claws

ii. Erect upper body texture

∙ Tend to naturally sit upright, don’t have to use hands  

to hold oneself up

d. Group 2: Diet and Teeth

i. High quality diets

∙ Fruits provide nutrients and calories needed

∙ One primate might favor and focus on one food item  

over the other with variation

∙ Tend to have a simple digestive system

ii. Generalized Dietician

∙ Heterodont


a. Multiple different types of teeth(4 different)

∙ Homodont

a. Opposite; teeth are all the same

∙ Teeth tend to vary a little from one species to the  


e. Group 3: Primate Senses

i. Color Vision

∙ Variable between non-human primates

∙ Primates who are able to see in color may have an  

advantage over another primate

ii. Eyes Frontated: stereoscopic vision

∙ A consistent trait

∙ Eyes are closer to the center of the face

∙ Both views are merged in the brain to form a single  


a. Allows for depth perception

∙ More complete closure of the eye-socket bone

a. Postorbital bar or postorbital closure

iii. Vision> Olfaction

∙ Rely more on visual info to navigate world rather  

than smells

∙ Most primates don’t have a snout

f. Group 4: Brains and Behaviors


i. Large Brains and Encephalization

∙ What animal share “extra” brains

∙ Encephalization is the relationship between size of  

brain versus the size of the body

a. Humans EQ= 7.5; which is pretty large

∙ Primates are highly social and it takes brain power to  


ii. Life History and Social Behavior

∙ K-selected not, r-Selected

∙ Fewer offspring, more investment in each  

∙ Intelligent

∙ Complex social behavior and social organization

iii. How much of an organism's life-span is spent in each of  those stages of life?

∙ Primates that tend are non-human, tend to live  

longer and have a larger body size

∙ Primates tend to be dyernal instead of nocturnal

a. Active during day instead of at night


ANTH 196 

Final Exam Study Guide!  

1. Early Hominins? 

a. Early Hominin Traits:

i. Bipedal

ii. Teeth and jaws

∙ Thick molar enamel

∙ Relatively large molars

∙ Robust mandibles; tooth rows less parallel

∙ Relatively small canines

∙ Reduction of C/P3 honing complex

b. First Appeared

i. 5-7 million years ago

c. Sahelanthropus tchadensis

i. Found in Chad, Africa

ii. Nickname is “Toumai”

iii. 6-7 million years ago

∙ Some skepticism when it actually was around  

iv. One cranium

v. short , wide face


vi. Supraorbital torus

∙ Brow Ridge

vii. Small Canine  

viii. Post orbital construction

d. Orrorin Tugenensis, “the Millennium Man”

i. 6 million years ago in Kenya

ii. 13 fragmentary bones; teeth, postcrania

iii. Proximal Femora

∙ Heads large, relative to necks

iv. Thick enamel, relatively

v. Curved Finger Bone

e. Ardipithecus Ramidus & Ardipithecus Kadabba

i. 4.4-5.8 million years ago

∙ Ramidus- about 4.4

∙ Kadabba- 5.2-5.8

ii. Traits

∙ Ape Like

a. Molars not large; shape is ape like

b. Thin enamel(only a tiny bit thicker than chimp)

∙ Hominin like

a. Small, blunt canines

b. Incisors intermediate between australopiths  


and chimps

c. Lower molars broader than comparable ape

d. Foramen magnum position-b personality

f. Australopithecines

i. Early Species

∙ Australopithecus anamensis

∙ Australopithecus afarensis

∙ Kenyanthropus platyops

∙ Australopithecus deyiremeda

∙ Australopithecus africanus

ii. Australopithecus anamensis

∙ 3.9­4.2 million years ago

∙ Allia Bay, Kanapoi, Kenya

∙ palate , mandible, tibia, small piece of temporal

iii. Australopithecus afarensis

∙ 3.6­2.8 million years ago

∙ Hadar and Dikika, Ethiopia; Laetoli, Tanzania

∙ At least 35 individuals, including “Lucy”

iv. Australopithecus afarensis Cranial Anatomy

∙ Brain Average­ 400 cc

∙ Brow Ridge


∙ Cheekbones robust and flared

∙ Teeth

a. Canine and incisors intermediate

b. Molars large, thick enamel

c. Progathism­ forward jaws

∙ Shoulder and Arms

a. Sock points slightly upward like in the chimp

b. More cone shaped

∙ Fingers

a. Cavatore to finger bones

b. Ridges built on sides

∙ Pelvis

a. Larger than humans

b. Knee joint is complete with bipedalism

c. Shaft of femur slightly angled

d. Key feature in bipedalism

∙ The Laetoli

a. Fossil footprints

∙ Toes and Foot

a. Intermediate length; shorter than biped, curved toes

b. Heel bone is enlarged


v. Australopithecus afarensis: Social Life

∙ Dimorphism­ males fight alone

∙ Social system­ female choice

a. Monogamy

vi. Australopithecus africanus

∙ About 2.5 million years ago as much as 4 mya

∙ South Africa

∙ Average Brain size= about 440 cc

∙ Cresting Reduced

∙ Incisors reduced

∙ Less prognathism

a. Jaws instead of nose projecting forward

∙ Mandible more robust

∙ Molars larger, thicker enamel

∙ Sexual dimorphism in the males

g. Later Australopithecines

i. Species

∙ Australopithecus aethiopicus

∙ Australopithecus boisei

∙ Australopithecus robustus

∙ Australopithecus garhi


∙ Australopithecus sediba

ii. Australopithecus garhi

∙ East African; Ethiopia

a. Bouri Locality

∙ 2.5 million years ago

∙ Some cranial pieces and postcranial bones

a. Arms and legs

∙ Brain is fairly small= about 450cc

∙ Large molars and premolars

∙ Cutemarked animal bones were found at this sight

iii. “Gracile” vs. “Robust” Australopithecines

∙ Gracile= lightly built

∙ Robust= heavily built

a. Cranial robusticity

b. Greatly enhanced chewing apparatus in robust  


c. Larger teeth

iv. Paranthropus

∙ Alternatives genus for the “robust”  


a. Reduction in incisors and prognathism

2. Early Evolution in Genus? 


a. Early Homo: Homohabilis and Homorudolfensis i. Lived around 2.3-1.8 mya

ii. Two possible species among early fossils

iii. Highly variable  

∙ Lots of variation

iv. Brain sizes= < 600cc to 780cc

v. Postcrania

∙ Australopithecines and human like

vi. East and south africa

b. 1813 Group

i. Brain average 600cc

∙ Averaging less than half a human sized brain

ii. Small face, no cresting

iii. Front teeth

∙ Australopithecines africanus; molars smaller

iv. Thickening of the bone above the eye orbits

v. Arm bones relatively longer

vi. OH62= “chimp like”

c. 1470 Group

i. 780cc

ii. Face would have been wider

iii. Teeth bigger no clearly defined brow ridge


iv. No forward projection of nasal bones

v. 1470 group males, 1813 group females

vi. ER1472

∙ Leg bones appear basically modern

d. Technological Beginnings among Hominids

i. Primate Technology

∙ Tool use

a. Use of external objects to accomplish a goal

b. Goal is usually something like food

c. Only monkeys and apes participate in this

ii. Old World Monkeys- lab settings  

iii. New World Monkeys- Capuchins

∙ Captive- rake, push, dip, nut cracking

∙ Wild- nut cracking, also one stick use report

e. Capuchin Nut Cracking

i. Hammer and Anvil Technique

∙ Eat edible meat inside

ii. Challenged in captivity

∙ Now they are able to do it  

iii. Grew up learning how to do this

f. Primate Technology: Apes

i. Orangutan


∙ wild - honey sticks; leaf “gloves”

∙ Captive- bamboo, branches used to get food

ii. Gorilla  

∙ Wild- branches to test water depth; for support

∙ Captive- throwing; probes; “rakes”

g. Chimp Technology

i. Leaf sponges- to get water

ii. Leaf cushions- to be more comfy

iii. Branches used as weapons

iv. Termite fishing

∙ Modification of natural item

a. Tool making

v. Nut cracking

∙ Transport of tools

h. Termite Fishing

i. Primarily in East Africa

ii. Chimps do this to make tools

i. Anti Dipping

i. West African Variation of Termite Fishing

∙ Females tend to be better at this than males

a. More motivation

3. The Oldowan: Earliest Stone Tools 


a. Cores and Flakes

i. Cores

∙ Stones and Pebbles

ii. Flakes

∙ Removed from Cores

iii. First discovered at Olduvai Gorge, Tanzania

iv. Most ancient site so far, Lake Turkana, Kenya; 3.3 mya v. Another Key site: Gona, Ethiopia; 2.6 mya

vi. THe Oldowan lasts (alone) until about 1.6 million years ago

∙ Basic technology continues to be used until the  

present in any culture that are part of the tool kit

b. The Oldowan: Mary Leakey

i. Responsible for classification of artifacts

ii. Cores and flakes ­> technological type names

∙ Naming them based on how they are made

∙ Not telling shape or use

iii. Choppers 

∙ Used for any task that could be physically used for

∙ Some of them not used at all

iv. Flakes and scrapers

∙ Some kind of edge on them

∙ Flakes removed where it showed working edge

∙ Heavy duty and light duty

∙ Used for any task

v. Not much correlation between what a tool looks like and what its used for  c. Technological Requirements

i. Had to understand fracture properties of rock: conchoidal fracture,  platform selection, proper angles

∙ Implicitly use knowledge of fracture properties of rock

∙ Didn’t have to explain, just understand

∙ Conchoidal­ ripples seen by force

● Also had to select proper raw material


○ Very little insides

○ Tend to use basalt

○ Use volcanic ash

○ Choosing the best stone from what was locally available 

d. Oldowan Tools: Function

i. Edge wear, polish

∙ Wood

∙ Meat

∙ Bone breakage

∙ Scrape hides

∙ Cut plant matter

ii. Flakes, cores used

iii. Butchery: cut marks on animal bones

iv. Possible for bonobos to make stone tools

∙ Entire assemblage doesn’t look like artifacts

v. Robust australopithecines 

vi. Homo habilis

vii. Au. Garhi found with stone cut mark tools

viii. Cut mark animal bones

e. Continuing Evolution in Genus Homo: Homoergaster

i. Appear 1.7­1.8 mya

ii. Africa first, then Eurasia 

iii. Brain: 800­1200 cc

iv. Large bony nose

v. Facial structure starting to look more modern

vi. Body proportions basically modern

vii. Molars decrease, incisors increase, nuchal area expands

viii. Skull long and low

ix. Cranial bones thick

x. Nuchal torus, sag. Keel (nuchal­neck) (sag keel­ thickening of bone  running from back to front)

f. Homo Erectus: Below the Neck

i. KNM­WT 15000: Nariokotome Boy

a. About 1.5 mya (“ergaster”)

b. Maybe about 11­12 years old (M2)


c. Brain ~900 cc

d. Mandible: no chin

e. Could have been 6’ as adult (5’5”) [H erectus average 5’7”]

f. Barrel shaped torso

g. Humanlike spine

i. S­shaped curvature

ii. More dramatic; larger body size

h. Upper limb: modern

i. Pelvis: modern overall

i. Might have been more efficient at walking than 

modern humans

j. Lower limb: basically modern

k. Limb bones very thick, robust

4. Out of Africa I: Dispersal of Homo Erectus? 

a. Dmanisi

i. Located in former Soviet Republic of Georgia; near the Black Sea

ii. 1.75­1.8 mya

iii. Four relatively complete crania

iv. Variable morphology

v. Lithic technology: Oldowan­level

∙ Basic core and flake technology

vi. Some possible issues with dating, context

vii. Brain sizes noticeably below homo erectus 

∙ 780 cc­ fairly small

∙ 650 cc­ homo habilis range

viii. Originally placed into ergaster

ix. D2700; mandible D2735

x. Only about 600cc brain

xi. Blend of habilis and erectus

xii. New species proposed Homo georgicus


b. Asian H. Erectus

i. Javan and Zhoukoudian composite

ii. SE Asia (Java); China

iii. Dates as early as 1.8 mya; thru 500­200 kya


iv. Brow Ridge more straight

v. Skull bones thicker

∙ Thicker cranial vault

vi. Larger molars 

vii. More angled occipital 

viii. Larger brains: Africa <900 cc; Java 900­1000 cc; China 1000­1100 ix. Could be chronology… later African erectus has larger brain x. Species level differences (?)

c. Homo Erectus Anatomy

i. Robusticity of skeleton

ii. Long legs for efficient stride

∙ Less energy spent

∙ Some selection going on

iii. Molars and face less robust

iv. Large incisors, nuchal area

d. Homo Erectus Behavior

i. Hunting

ii. Acheulean, Clactonian/Oldowan

iii. Chose best raw materials; greater range of stone types exploited iv. Use of fire

e. The Acheulean

i. 1.6­0.2 mya

ii. Africa, Near East, Europe, far East

iii. Bifacial tools main addition

iv. Soft­hammer percussion

∙ Intentionally making tools like axes and cleavers 

v. More retouched flake tools also

vi. Symmetry across long axis

vii. Thin from front to back

f. Biface vs. Non­Biface Sites

i. Some Acheulean­age sites lack bifaces

ii. In Europe, called Clactonian

∙ Found in areas that are heavily forested 

iii. Asia: chopper­chopping tool industries

∙ Other possible material bamboo

iv. Why?

∙ Environment: habitat specific

∙ Loss of technology

∙ Multiple migrations

v. Schoeningen, 400 kya


∙ In Germany 

∙ Between homo erectus and homo audr.

∙ Made spears

∙ Site exception to wood preservation

∙ Made throwing spears

5. The Neandertals  

a. Late Pleistocene (non-modern) Europeans

i. ~130 kya­ 35/30 kya (24 kya?)

ii. Europe, Near East, possibly North Africa

iii. 275+ individuals; 70+ sites

iv. Contemporaries include H erectus/H Heidelbergensis in the Far East; H.  Heidelbergensis and (later) anatomical parts in Africa

b. Neanderthal Crania

i. Krapina (early Neandertal)

ii. Brain size avg. 1500 cc (above modern average)

iii. Long, low vault

iv. Occipital bun

∙ Projection off back of skull

v. Pronounced brow ridge

vi. Large nose

vii. Midfacial projection (prognathism)

viii. Cheekbones angled back; inflated maxilla 

ix. Mandibles: retromolar space, mostly chinless

∙ Straight down or recede back

∙ Space behind third molar

x. Teeth:

∙ Molars, premolars reduce

∙ Taurodontism

a. Pulp cavity expanded in molar 

b. Roots further down

∙ Shoveled incisors; extreme wear on incisors 

c. Neanderthal Postcrania

i. Robust; thick cortical bone

ii. Barrel chest

iii. Broad pelvis

iv. Forearms, lower legs relatively short

∙ Women: 5’

∙ Men: 5’ 6”

v. Large joints 

vi. Huge hands, big fingertips 

d. Cold Adaptation


i. First hominid to adapt to glacial conditions 

ii. Huge noise and midfacial projection: warm, moisten air 

iii. Short distal limbs, barrel chest: minimize surface area: volume, retain  heat

e. Neanderthal Behavior

i. Stone Tools

∙ Middle Paleolithic 

∙ Large numbers on retouched flake tools (scrapers)

∙ Some differences through time 

a. See some variability 

b. Sites will look different 

c. Geographic variation 

ii. Technological Innovation: Levallois

∙ Found in Europe, Near East, North Africa

∙ Much less frequent in sub­Saharan Africa

∙ Prepared core technology: remove flakes of predetermined size 

and shape 

∙ More efficient use of raw material than Acheulean technology 

iii. Behavior from Fossils

∙ Very old individuals exist: La Chapelle

∙ Shankar 1, another elderly man, had arthritis, other serious 


∙ These individuals demonstrate compassion

a. Would’ve had trouble fending for themselves

b. Critics of this theory 

∙ Sick or injured individuals often survived to recover fully

∙ Trinkaus main proponent of idea that this indicates compassion

∙ Close range hunting also implied from breakage patterns in long 


f. Burials of Neanderthals

i. Europe, Near East

ii. Not all Neandertals intentionally buried

iii. Less elaborate than later

iv. Some have traces of ocher

∙ Ocher­naturally red pigmented sediment 

∙ Intentionally put into burials 

∙ Higher concentration found with body than elsewhere in site

v. Shanidar flower burial

vi. Contemporaneous burials of anatomical moderns similar, may have  rudimentary grave goods

g. Neandertal Symbolic Behavior


i. Burials 

ii. A few ornaments 

iii. No representational art

iv. No accepted musical instruments

v. Stone tools sometimes used here: standardization, diversity of 

types,difficulty of making 

h. Did Neanderthals have Language?

i. Articulate speech first focus; early study said no

ii. Later analyses challenged this 

iii. Kebara hyoid bone

∙ Bone in neck associated with larynx

∙ Basically modern looking

∙ Robust than modern humans

iv. Probably physically capable of speech; language (?)

i. Subsistence/Hunting

i. Abundant animal bones

ii. Sometimes “ignore” resources

iii. Less efficient hunting? No evidence yet for long­distance hunting  weapons

iv. Some scavenging, plant gathering important 

v. Need fire, clothes; no evidence for sewing yet

vi. Structures? Not much to go on

∙ Shelters

∙ Often found in caves 

a. Better preserved

b. May have been building windbreaks 

∙ Open air encampments 

6. Out of Africa II: Modern Human Origins? 

a. Continuity and Replacement

i. Continuity­starts with migration ­> various regional population that lead to  evolution in various regions due to gene flow

ii. Replacement­starts with migration then quickly breaks off

∙ Second migration out of Africa 

b. Hominin Fossils and Continuity

i. Compare non­modern fossils with modern people by region

ii. Trace regional differences through time

iii. Example: H. Heidelbergensis­type Indonesian fossils ­> Native 


iv. Neanderthal similarities to modern Europeans?

c. Hominin Fossils and Replacement


i. Some areas have fast replacement; others, long coexistence

ii. Some specimens claimed as intermediate or hybrid

iii. Herto remains, 160 kya

7. Modern Human Origins II? 

a. Tools/ Culture and Modern Human Origins

i. Traditionally: Neanderthals, H Heidelbergensis with Middle Paleolithic  culture; modern people with Upper Paleolithic 

ii. Earliest modern humans, MP or MSA

iii. In Africa: elements of modern toolkit appear

iv. ~50 kya: UP/LSA culture begins to spread

b. Evidence for Replacement: Modern Human DNA

i. MtDNA evidence: common ancestral population in Africa, 200 kya ii. Modern humans quite genetically similar 

iii. African DNA is the most variable; other regions have subsets of African  genes

iv. Y chromosome studies support mitochondrial work

c. Evidence for Replacement: Ancient DNA

i. Neanderthal DNA, 1997

ii. Small sample

iii. First Neanderthals sampled not involved in modern human gene pool iv. New evidence suggests that there may indeed have been interbreeding  d. Transition to Modern Appearance

i. Involves reduction in robusticity

ii. Skeleton less heavily built

iii. Shift in brain case

∙ Forehead

∙ Chin

iv. No brow ridge

v. Reduction in tooth sizes

e. Overview of the Upper Paleolithic: First “Modern” Culture

i. Anatomical modern appear ~160 kya; begin to act modern much later ii. Fairly rapid cultural acceleration starting around 40 kya

iii. Stone tool technology advances; regional styles

iv. Bone used for toolmaking 

v. Elaborate burials 

vi. Art

∙ Representational

∙ Hand prints

∙ Cave art

∙ Portable art


8. Modern Human Variation? 

a. The Adaptive Perspective

i. Variation as evolutionary result of adaptation to environmental conditions ii. Environment: stress

iii. Homeostasis

b. Levels of Response to Stresses

i. Adaptation 

∙ Long­term, evolutionary (genetic) change

∙ Entire population or species

ii. Adaptability 

∙ Effects of a lifetime in a particular environment 

∙ Changes that happen to individuals rather than populations

iii. Acclimatization

∙ Short­term (can be days or weeks)

∙ Often temporary 

iv. Behavioral and/or cultural 

∙ Exposed to environmental stressor, change for this stressor

∙ Ex: heat stress; become less active; cultures: siesta, A/C

c. Adaptation in Modern Humans: Skin Color

i. Protection from Sun

∙ Passive: like sunscreen

a. Dark skin= SPF of 10

b. Moderately dark skin= SPF of 2.5

∙ Active: Melanocytes can neutralize free radicals from UV damage

a. Melanocytes­ pigment producing genes

ii. Folate

∙ Essential for DNA replication, especially in spermatogenesis 

∙ Don’t produce in body, taken in through diet

∙ Deficiency: DNA synthesis compromise; neural tube defects

∙ Neural tube­ in fetal development that become spinal cord

∙ UV radiation breaks down folate

∙ Light­skinned people exposed to strong sunlight: abnormally low 

folate levels

iii. Vitamin D

∙ Selection for dark­skin might be relaxed

∙ Gene flow

∙ Vitamin D for proper growth of bones

∙ Absorb calcium into bones

a. Calcium ions needed

b. Not enough­ can end up with Rickett’s 

i. Starts to put weight on legs, more flexible than they


should be, end up with long bones bending

∙ Vitamin D produced in skin under light

∙ Closer to equator, longer exposure to UV light 

a. More melanin seen towards equator due to protection

b. More vitamin D seen towards poles

d. Adaptation to Modern Humans: High Altitude 

i. Altitude Stressor: Hypoxia

∙ Less oxygen in body at higher altitudes

∙ Hypoxia= low oxygen pressure 

∙ 4500 m above sea level, oxygen pressure drops up to 40%

∙ Low pressure ­> more difficult for body tissues to obtain, use 


∙ Physiological adjustments

ii. High Altitude: Acclimatization 

∙ Kicks in within hours

∙ Hyperventilation­ respiratory rate goes higher than expected to be

a. Pull more oxygen into body

b. Decreases concentration of CO2

∙ Increased heart rate

∙ Increased red blood cell production

∙ Increase in number of capillaries 

a. Changes persist for a number of weeks

b. Altitude training

iii. Altitude Adaptability: Andes

∙ Able to respond with developmental adaptabilities

a. Grow and mature more slowly

b. Greater circumference around chest ­> greater lung 


c. Seen more as plasticity 

iv. Altitude Adaptability and Adaptation: Tibetan

∙ Higher altitudes, higher rates

a. Mortality

b. Premature birth

∙ Vascular supply dependent 

e. Adaptation in Modern Humans: Thermoregulation 

i. Response to Heat Stress

∙ Acclimation/acclimatization

a. Vasodilation­ blood vessels dilate closest to skin

b. Sweating

∙ Cultural 

a. Lower activity levels


b. Work during cool parts of day

c. Wear less clothing, use of fan and AC

ii. Response to Cold Stress

∙ Acclimation/acclimatization

a. Vasoconstriction­opposite of vasodilation 

b. Shivering 

c. Affected by age

∙ Cultural

a. Add more clothes

b. Increase activity level

c. Fire, central heating

iii. Bergmann's Rule

∙ Body size increases as temperature decreases 

∙ Larger body mass but similar proportions= surface area smaller as

a proportion of volume 

∙ Affect: slower rate of heat loss

iv. Allen's Rule

∙ In warmer climates, limbs will be longer to body size than in cooler


∙ Increases surface area/mass

∙ More effective heat loss 


Page Expired
It looks like your free minutes have expired! Lucky for you we have all the content you need, just sign up here