New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Test 2 Study Guide - March 2, 2016

by: Grey Garris

Test 2 Study Guide - March 2, 2016 BIO 1144

Marketplace > Mississippi State University > Biology > BIO 1144 > Test 2 Study Guide March 2 2016
Grey Garris
GPA 3.83

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

Good Luck on Test 2 Guys!
Biology II
Dr. Williamson
Study Guide
50 ?




Popular in Biology II

Popular in Biology

This 11 page Study Guide was uploaded by Grey Garris on Sunday February 28, 2016. The Study Guide belongs to BIO 1144 at Mississippi State University taught by Dr. Williamson in Spring 2016. Since its upload, it has received 160 views. For similar materials see Biology II in Biology at Mississippi State University.

Similar to BIO 1144 at MSU

Popular in Biology


Reviews for Test 2 Study Guide - March 2, 2016


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 02/28/16
    1  BIO 1144  Bio II with Dr. Williamson    Angiosperms  ● Monocots vs. Dicots  ○ Angiosperms have two major types: Monocots and Dicots. Both have distinct differences at multiple  stages of their life cycles.  ○ Monocots (Grasses, Palms, etc.)  ■ Have one seed leaf. When they grow from the ground they have a single leaf that grows  first.  ■ They have 3 parts to their flowers.  ■ The veins in their leaves are straight and parallel from the shoot end to the leaf tip.  ■ The vascular bundles (channels for air) in their stems are scattered at irregular intervals  throughout the body.  ■ Their roots branch off in multiple directions from the instant the shoot is in the ground. This  is called a Fibrous root system.  ■ They only exhibit Primary Growth, which is the stem growing upwards and the roots  growing downwards.  ■ Their pollen grains have only one fold/pore/slit in them.  ○ Dicots (Roses, Sunflowers, etc.)  ■ They have two seed leaves.  ■ They have 4 or 5 parts to their flowers.  ■ The veins in their leaves are branching and go outward in a wide pattern called a “net.”  ■ The vascular bundles are set in rings.  ■ Their roots branch from a single downward reaching root called the “taproot.”  ■ They exhibit Primary Growth as well as Secondary Growth, which is the thickening of the  stem and roots as well as the upward/downward growth.  ■ Their pollen grains have three folds/pores/slits.  ● Specialized Plant Cells  ○ Parenchyma  ■ Least specialized of the cells in plants. They have thin, flexible cell walls and remain alive  into their mature stage. They act as enablers for the metabolic functions of the plant. They  usually have one large vacuole (water storage organelle). Many Parenchyma can actually  change into other specialized cells given the proper conditions such as damage repair.  ○ Collenchyma  ■ They have thicker cell walls that can be unevenly thick and are still living at maturity. They  act as support for many plants.  ○ Sclerenchyma  ■ They have thick cell walls and are dead when they reach maturity. They cannot grow in  length so they only exist in the parts of the plant that have stopped growing in that  direction.  ● Fibers ­ long, thin with a generally normal cell wall. Ex: Hemp.  ● Sclerids ­ short cells with irregular shapes. Ex: Seed shells.  ○ Xylem  ■ They have thick cell walls and are usually uneven but in a curling pattern to allow  stretching. They are dead when they reach maturity. They help with water and mineral  movement.   ● Tracheids ­ long, thin cells connected to one another by “pits.” They are found in  all vascular plants.      2  ● Vessel Elements ­ shorter than Tracheids and have a hole in their cell wall ends.  These are only in angiosperms  ■ Phloem  ● They transport sugars and other organic compounds. They are living at maturity  but may lack organelles and a nucleus. Each end is connected to the next via  Sieve­Plates, which are highly porous end caps.   ○ Sieve Tube Elements ­ the channel for sucrose to move through the  plant.  ○ Companion Cells ­ cells that assist the sieve tube element and help with  dispersal of sucrose.  ● Plant Tissues ­ Plants have three main types of tissues: Dermal, Ground, and Vascular.  ○ Dermal Tissue ­ The skin of the plant. It is usually only one layer of cells and mostly composed of  Parenchyma cells. Its function is to protect the plant.  ○ Ground Tissue ­ This is what the majority of the plant is actually comprised of. It is mostly  Parenchyma cells but has Collenchyma and Sclerenchyma cells dispersed throughout as well. It  functions for photosynthesis, material storage and the structural support of the plant.  ○ Vascular Tissue ­ This is the Xylem and Phloem tissue, which is specifically for the transport of  water and minerals.   ● Plant Growth ­ Plants have indeterminate growth, which means that they have tissues which constantly  regenerate despite the removal of others. The cells in these tissues are undifferentiated, which means that  they can become any other type of cell.  ○ Meristems ­ Meristems are the very tips of branching parts from a plant. There are two different  forms: Apical and Lateral.  ■ Apical Meristems ­ These are the tips of roots and shoots (the part above the ground) and  allow the plant to grow in length, which is called Primary Growth. This kind of growth  occurs in Monocots and Dicots alike.  ● Primary Growth in Roots  ○ Root Cap ­ The covering over the very tip of the Meristem. The Cap has  special cells called Columella Cells that register gravity and allow roots  to extend downward. This cap is derived from the Root Apical Meristem  itself. This Cap also secretes Mucigel as a lubricant to allow movement  through the soil. This Cap is regularly shedded like a snake skin and  replaced.  ○ Root Apical Meristem ­ The entire area of cells contained by the Root  Cap. Most of the cell division is actually directed away from the Root  Cap. This Meristem creates the Primary Tissues: Protoderm, Ground  Meristem, and Procambium.  ■ Protoderm ­ creates the Dermal Tissue.  ■ Ground Meristem ­ creates the Parenchyma cells.  ■ Procambium ­ creates the Vascular Tissue.  ○ Quiescent Center ­ This is an area within the Apical Meristem where the  cells do not reproduce as quickly as other cells. They are resistant to  damage from chemicals and radiation, which makes them a workable  reserve of cells if the rest of the Meristem is damaged,  ○ Zone of Elongation ­ The cells in this area of the root can lengthen by 10  times their original length and help to push the root down and through  the soil.  ○ Zone of Maturation ­ The area of cell differentiation and tissue  specialization. This has “root hairs,” which are small follicles of the root      3  that reach into areas of the soil that the rest of the root cannot reach  due to their small size.  ○ Root Anatomy  ■ Monocots  ● Epidermis ­ Composed of Dermal Tissue and protect  the root.  ● Cortex ­ Composed of Ground Tissue and store the  products of photosynthesis and work to absorb  nutrients.  ● Endodermis ­ A cylindrical, single­cell wall of cells  between the Cortex and the “stele,” which is a central  core of vascular tissue. Contains the Casparian Strip.  ● Vascular Tissue ­ Xylem and Phloem in a ring format  in the center.  ■ Dicots  ● Epidermis ­ Composed of Dermal Tissue and protect  the root.  ● Cortex ­ Composed of Ground Tissue and store the  products of photosynthesis and work to absorb  nutrients.  ● Endodermis ­ A cylindrical, single­cell wall of cells  between the Cortex and the “stele,” which is a central  core of vascular tissue. Contains the Casparian Strip.  ● Pericycle ­ Inside the Endodermis and is responsible  for the formation of Lateral (sideways) roots.  ● Vascular Tissue ­ Xylem and Phloem in an X format in  the center.  ● Primary Growth in Shoots  ○ Apical Meristems ­ Dome­shaped bud of dividing cells at the tip of the  stem. Creates the three types of Meristems like in roots: protoderm,  ground meristem, and procambium.  ○ Axillary Meristem ­ Regions of meristem tissue left after the apical  meristem grows further. A dormant region but can become active in  order to form branches.  ■ Lateral Meristems ­ These are not actual tips in most cases, these are on the outer edges  of the plant like a second skin. They allow the plant to grow in width, which is called  Secondary Growth. This type of growth is only found in Dicots.  ● Secondary Growth in Shoots ­ Lateral Meristems increase the plant’s width by  generating Secondary Vascular Tissue (meristems made by tissues to help with  secondary growth: Vascular Cambium and Cork Cambium) and Periderm.  ○ Vascular Cambium ­ A cylinder of meristem tissue that produces  additional Xylem and Phloem. These cells come from the Procambium  (part of the vascular bundles) and the Interfascicular Parenchyma cells  between the vascular bundles (the first word just means between the  bundles). These two forms of cells create a single ring of cells that is  called the Vascular Cambium (which just means a ring of vascular  tissue).  ■ Division Patterns  ● Multiplicative Division ­ When the cells all divide as  separate units that continue to divide further. Many      4  more initial cells and increase the circumference of  the VC by widening the ring.  ● Additive Division ­ The cells divide but one cells  remains to become a Phloem or Xylem mother cell,  which just turn into their respective cell types.  ○ Cork Cambium ­ A new protective tissue that replaces the Epidermis  when it falls off as the plant grows in width. Basically a new skin. It is a  meristematic tissue that originally formed the outer cortex (the meat of  the plant) and now produces Cork Cells, which act as the protective  layer on the outside. Like human skin cells, these cells produce a waxy  substance that hardens them until they die in order to protect  themselves. Its called Suberin. The Cork Cambium and the Cork Cells  together are referred to as the Periderm. Bark is Periderm with the  Phloem.    Plant Behavior  ● Plant Behavior is any response they have to specific stimuli.  ● Internal Stimuli ­ Biological Clocks and Hormones are controlled by the plant and are regulated by  alternations of night and day. Their actions include Leaf Movement, Flower Opening, and Fragrance  Emission.  ● Environmental Stimuli are any outside forces acting on the plant. They are Physical, such as light and wind,  and Biological, such as predators and chemicals.  ● Plant Cell Signals  ○ Plants react to changes in their environment via specific cell signals such as hormones. There are  three stages to Cell Signaling: Receptor Activation (a signal binds to a protein receptor on a cell  wall), Signal Transduction via Secondary Messengers (a molecule is released into the cell by the  activated protein receptor), and Effector Release (the cell responds with an Effector that directly  influences the cellular response to the stimulus.  ○ Hormones  ■ Chemical signals that have a variety of effects depending on what they are released into  and what other hormones are activated alongside them.  ■ Auxins ­ The “master” hormone that is produced in the apical meristems and young  leaves. The main example is Indoleacetic Acid (IAA).  ● Auxin­Responsive Genes ­ The expression of these genes is promoted by Auxin.  When there is a low level of Auxin repressor proteins prevent the gene  expression and when there is a high level of Auxin the repressor proteins break  down and the expression is enhanced.  ● Auxin Transport ­ Auxin mainly flows in a downward fashion from the shoots to  the roots. It is produced in the tips of young leaves and it is moved directly from  one Parenchyma Cell to the next. Uncharged molecules (IAAH) enter cells by  diffusion but charged ones (IAA) require the aid of transport proteins. Auxin  Influx Carriers (AUX1) carry Auxin into the cells and PIN Proteins help it move  out of the cells.   ● Function of Auxin ­ It establishes the apical­basal polarity of seed embryos. It  allows for the differentiation of vascular tissues from the undifferentiated cells. It  mediates Phototropism (growth towards sunlight) and promotes the growth of  roots and fruits.   ■ Cytokinins ­ Chemicals such as Zeatin. These chemicals increase the rate of cell division  and are mainly present in the root/shoot tips and seeds. They also have a role in the seed  and flower production and control leaf senescence (aging).      5  ■ Gibberellins ­ More than 100 forms of Gibberellic Acids. They are produced in the apical  buds, young leaves, and embryos. They interact with with light and other hormones to  foster seeds, help stems grow and flowering, and slows down leaf and fruit aging.   ■ Ethylene ­ Coordinates plant development and stress responses. It is produced during  seedless growth, flower growth, and fruit ripening. It causes leaf and petal senescence  and drop. It helps as defense against osmotic stress and pathogens and influences cell  expansion. It is often used in coordination with Auxin.  ■ Abscisic Acid ­ Stress hormone. It stops or slows metabolism during unfavorable  environmental conditions, It stimulates the formation of protective scales around the buds  of Perennial Plants.  ■ Brassinosteroids ­ Stress hormone. It is found in all parts of most plants and causes  vacuoles to increase their water intake. It allows for cell expansion, impedes leaf dropping,  stimulates the development of Xylem, and allows for the alteration of carbohydrates in the  cell wall.   ○ Responses to Environmental Stimuli  ■ Photoperiodism ­ the plant’s ability to measure and respond to the amount of light in an  area and the length of the day. It is not actually measuring the light but the time of the  darkness. This response is generated via light receptors within the cells and results in:  Sun Tracking (motion of the plant to turn towards the light), Phototropism (growth of the  plant towards a light source), and determines Flowering and Seed Germination.  ● Periods  ○ Long­Day Plants ­ Flower in Spring or in early Summer. They flower  when the night is shorter than the day. This includes beets, radishes,  and spinach.  ○ Short­day Plants ­ Flower in late Summer, Fall and Winter. They flower  when the night is longer than the day. This includes poinsettias,  soybeans, and chrysanthemums.  ○ Day­neutral Plants ­ They flower no matter what the time period of  darkness. This includes corn, sunflowers, and roses.  ○ Responses to Shade ­ The plant extends leaves from shady regions  towards regions of light via elongation of branches.  ● Receptors  ○ Blue­Light Receptors ­ Cryptochromes. They tell seedlings if there is  enough light available to perform photosynthesis, if there isn’t enough  then they “tell” the seedling to grow taller. The main one is  Phototroponin.  ○ Red and Far­Red Receptors ­ Phytochromes. They have great control  over Photoperiodism. Angiosperms use it to regulate the time of their  flowering.  ■ Gravitropism ­ Plants grow in response to gravity. Roots exhibit Positive Gravitropism  because they follow gravity by going downwards. Shoots exhibit Negative Gravitropism  because they go against gravity by going up. The two parts of the plant will do this no  matter how the seedling is placed in the ground.  ■ Thigmotropism ­ Plants respond to physical contact with objects. Roots that encounter  rocks use this response to override their Gravitropism response to force the root to grow  horizontally around the rock/barrier until the Gravitropic response can reactivate.  ■ Flooding ­ When roots are drowned they are unable to absorb sufficient oxygen. To  protect themselves they produce Aerenchyma, which are tubes for air channelling within  the root that are created by collapsing cells with ethylene.      6  ■ Drought ­ Drought has a similar response to that of high salinity (salt content) and  temperature shifts because all of them decrease the water content of cells. Abscisic Acid  manages this response and allows for the Aquaporin (channels that allow intake of water  at an extremely fast pace) to open and close. Drought stressed plants also close their  stomata to prevent water loss.  ■ Herbivores and Pathogens ­ Plants have structural barriers such as the cuticle (waxy  coating), epidermal trichomes (basically thorns and burrs), and bark. In the case of  herbivore attack plants have chemical responses too in that they can deter the herbivores  and summon the predators of those herbivores.    Plant Nutrition  ● Macronutrients are nutrients that the plant needs in at least 1 gram per 1 kilogram of dry plant mass.  Micronutrients are only needed at .1 gram per 1 kilogram.  ● Light  ○ Light is necessary for photosynthesis. Plants adapted their leaves to be sun leaves or shade  leaves. Shade leaves have thinner leaves to let more light filter through and produce more  chlorophyll to gather more available light. Sun leaves are thicker, have less spaces for air and more  stomata. The arrangement of the leaves is also key; tropical plants that don't see much light on the  forest floor have long stems with leaves only at the very top. Excess light can damage chloroplasts  so they change their position in the plant. Some carotenoids (light absorbing chemical) absorb  excess light and dissipate it as heat. UV radiation can be absorbed by the cuticle. carotenoids, and  the flavonoids. Plants that can do this are usually brightly colored.  ● CO​2  ○ Most of dry plant mass is C2​ Plants cannot obtain enough to reach maximum photosynthetic  potential. When there are hot, dry conditions the stomata close as well and the plant can’t absorb  CO​2​either.  ● H​O  2​ ○ Water is the source of most of the Hydrogen and much of the Oxygen in organic compounds in  plants. Water acts as the solvent and is used as a transport medium for plants. Plants are 90%  water and most will die if they go below half that normal amount.    Plant Transport  ● Plasma Membrane Transport Mechanisms  ○ Passive Transport (Does not require ATP)  ■ Diffusion ­ movement across a membrane. Uncharged particles only. Osmosis is water  diffusion.  ■ Aquaporin ­ Large channels for water to allow for rapid intake.  ■ Facilitated ­ Need minor help to move across the membrane.  ● Channels ­ Pores that allow for up to 100 Million molecules per second to move  through.  ● Transporters ­ The molecule binds on and changes the protein shape, which  releases it. Allows for 100 ­ 1000 molecules per second.  ○ Active Transport (Requires ATP to move it across membrane or against concentration gradient  (moving from low concentration to high instead of the reverse).  ● Turgor Pressure ­ Turgor Pressure is the pressure against the cell wall.   ○ Turgid Cells ­ These cells are full of water and the Plasma Membrane is pressed tightly against the  Cell Wall, which makes them rigid. This occurs when the plant is placed in a Hypotonic Solution.  ○ Flaccid Cells ­ These cells have a fair amount of water and the Plasma Membrane is not pressed  against the Cell Wall as tightly. This occurs when the plant is placed in a Isotonic Solution.      7  ○ Plasmolyzed Cells ­ These cells have so little water that there is a space between the Plasma  Membrane and the Cell Wall. This occurs when the plant is placed in a Hypertonic Solution.  ○ Water Potential ­Ψw is the symbol.  ■  The potential energy of water. It is directly influenced by the concentration of  solutes and  the presence or absence of a cell wall. It is measured in Megapascals (MPa) and water  moves along the Water Potential Gradient, from an area of high Potential to low. The  Water Potential is equal to the Solute Potential(determined by presence or absence of  solutes) plus the Pressure Potential, which is determined by the hydrostatic Pressure  (whethe the cell is Turgid, Flaccid, or Wilted/Plasmolyzed, which makes the Pressure  Potential positive, equal, or negative respectively. This is written as Ψw  =  Ψs + Ψp  ■ Relative Water Content ­ A measurement used to gauge the normal water content of a  plant or one of its organs. This is used to calculate whether a plant is able to recover from  water loss.  ○ Osmotic Stress  ■ Plants adapt to Osmotic Stress (rapid change in water movement/location) in two main  ways.   ● They can increase the solute concentration of the Cytosol (the fluid in the cell) in  order to decrease the Water Potential and draw the water into the cell. The solute  addition lowers the freezing point of the Cytosol.   ● They can open or close Aquaporin Channels in the Plasma Membrane allow  water to rush in or out depending on the need.  ● Short Distance Transport  ○ Transmembrane Transport ­ The movement of materials between two cells via transport proteins.  This leads to repeated crossing of cell membranes and walls and is, in practice, like a line of people  passing a bucket of water down the line.  ○ Symplastic Transport ­ Movement of materials from cell to cell via the Plasmodesmata. These are  small tubes that link cells together and allow for quick transport by just moving through the tube.  There are two parts to this transport: Protoplasts (the contents of a single cell including its cell wall)  and the Symplasts (the Protoplasts plus the Plasmodesmata).  ○ Apoplastic Transport ­ An Apoplast is the “empty” space between the cells. Materials can move  through this space. This is for quick and easy transport of water and minerals.  ○ Concept Visual  ■ Think of this transportation as though each cell is a building in New York. Transmembrane  Transport would be like one person throwing an item from their window to a person in the  building over and that person doing the same to the other person and so on. Symplastic  Transport would be like having walkways between the buildings for people to go straight  across between the buildings. Apoplastic Transport is like moving through the streets  below to walk into the buildings.   ● Long Distance Transport  ○ Movement from the Roots to the Shoots and Leaves can be difficult. This is mainly in trees,  especially since some trees can grow taller than 110 meters (roughly 360 feet). For this movement,  Xylem and Phloem are used because they are extensive, branched vascular tissues.   ■ These Vascular Tissues allow for Bulk Flow, which is the mass movement of liquid or  material due to gravity, pressure, or both at once. Bulk Flow is faster than diffusion.  ○ Xylem  ■ In Angiosperms Xylem has specialized cells and their structures are important to their  function. Tracheids and Vessel Elements are separate structures but both function mainly  for water uptake, which makes them both Xylem structures.  ● Parenchyma Cells ­ Living at maturity. They have thin, flexible cell walls and  remain alive into their mature stage. They act as enablers for the metabolic      8  functions of the plant. They usually have one large vacuole (water storage  organelle). Many Parenchyma can actually change into other specialized cells  given the proper conditions such as damage repair.  ● Vessels  ○ Tracheids ­ Dead at maturity. Long, narrow cells with slanted end walls  that fit together like a puzzle. They have lignin rings around their walls to  allow for extension. Some areas have no lignin, these areas are called  Pits. These “Pits” are parts of the wall that are 1 cell thick and are  permeable to water. Water moves both vertically and laterally through  these pits.   ○ Vessel Elements ­ Dead at maturity. They are arranged like pipes and  are plentiful in angiosperms. They have wide diameters comparatively,  which allows for greater bulk flow, and their cell walls are 2 cells thick  and lignified (have lignin rings present). They too have Pits and the  ends of their cells have large holes to connect them to the next Element  and still allow Bulk Flow.  ○ 2 Types of Water Conducting Cells are needed because both types are  vulnerable to Embolisms (air bubbles that block the flow of water)  caused by damage, drought, and freezing/thawing cycles. In woody  plants these vessels can be completely blocked and if there were only  one type of cells available the entire area they fed water to would die.  ● Transpiration ­ Transpiration is the loss of water by evaporation. This effect is  used to force water upwards through the vessel cells. This requires no energy  because it’s natural as the water warms within the plant. This effect is the main  way that water is moved long distances through plants. 99% of the water  absorbed by plants is evaporated away by Transpiration because its main  function is to act as a transport mechanism for materials.  ○ Stomata ­ Stomata prevent the loss of this water by closing and allow it  by opening. A Stomata is just the hole, it is closed or opened by the  shrinking (close) or elongation (open) of Guard Cells around the hole.  ○ Leaf Abscission ­ When plants are under stress by having too little water  they drop their leaves in order to prevent water loss and embolisms  from air absorption.  ○ Phloem   ■ The main function of Phloem is to transport sugars and minerals. There are two different  types of Phloem: 1 Cell and 2 Cell. 1 Cell is in the Vascular Bundles and is comprised of  Sieve Tube Elements and Companion Cells. 2 Cell is in the Inner Bark and is comprised  of Fibers and Parenchyma Cells.  ● Sieve­Tube Elements ­ Living at maturity. Cylindrical cells stacked on one  another  with holes in their end walls.  ● Companion Cells ­ They help to repair STEs ^. They cause P Protein to collect  on the Sieve Plate (the junction between two STEs) to block loss from the  Phloem and prevents pathogens from infecting the cells.  ■ Phloem Loading ­ The active movement of sugar into the STEs. The main form of the  sugar is Sucrose because it is less likely to break down during transport.  ● Woody Plants ­ In woody plants Symplastic Transport is used and the Sucrose is  moved from a higher concentration to a lower one.   ● Herbaceous Plants ­ In nonwoody plants Apoplastic Transport is used and  Sucrose is usually moved from a higher concentration to a lower one. This  requires energy to move it across the cell membranes.      9  ■ Pressure Flow Hypothesis  ● Phloem Transport is driven by turgor pressure differences between the cells  where the sugar is made (source) and the cells where the sugar is used (sink).  The movement of Sucrose requires the Plasma Membrane, which explains why  the STEs are alive at maturity. Whenever the concentration of solute in the  Phloem decreases, water flows from the Phloem to the Xylem, which explains  why they are located so close together.    Plant Reproduction  ● Sexual Reproduction  ○ Alternation of Generations ­ Plants have two multicellular life­cycle stages and most have both  stages present on the main body.  ■ Sporophyte ­ The diploid, spore producing generation. This is the Dominant Generation in  all plants except the Bryophytes.  ■ Gametophyte ­ The haploid, gamete producing generation.  ○ Flowers ­ Reproductive shoots that are branches specialized for reproduction instead of leaves.  They are thought to have evolved from leaf­like structures and are produced by apical meristems.  ■ Whorls and Organs ­ There are 4 Whorls to Flowers. A Whorl is a concentric ring of flower  organs.   ● Sepals ­ They form the Calyx Whorl. They function to protect the unopened  flower bud. They are usually small and green but some are colored and they  generally remain around the base of the flowers.   ● Petals ­ They form the Corolla Whorl. Together with the Calyx Whorl they form  the Perianth. They function to attract pollinators.  ● Stamens ­ They form the Androecium Whorl. They produce spores. They are  composed of a Filament and Anther.  ○ Filament ­ The stalk supporting the Anther  ○ Anther ­ The chunk of plant material at the top. They are composed of 4  Microsporangia.  ■ Microsporangia ­ Produce the Microspores. Sacks of  Microspores.  ■ Microspores ­ Mother Cells that develop into Pollen.  ■ Pollen Grain ­ Immature male gametophytes. The wall between  2 Microsporangia breaks down to form one Pollen Sac. The  anther then splits to release the Pollen.  ● Has 2 layers: the Exine (thick layer of Sporopollenin ­  one of the most resistant biological materials in  existence. Pollen pores where this material is thin or  absent) and Intine (super thin inner wall).   ● Has 2 Cells ­ The Generative Cell (forms 2 Sperm  Cells) and the Pollen Tube Cell (forms the Pollen  Tube).  ● Carpels ­ They form the Gynoecium Whorl. They produce and enclose the  female gametophytes. It is a vase shaped and vascular tissues deliver nutrients  from the Sporophyte (remainder of the plant body) to it. One or more Carpels  fused are called a Pistil.      10  ○   ○ Pistil ­ single or a fused Carpel.  ■ Stigma ­ The top of the Carpel. Receives the Pollen.  ■ Style ­ The elongated portion of the Carpel.   ■ Ovary ­ Produces and Nourishes the Ovules  ■ Ovule ­ The Spore Producing Structure enclosed in  Teguments.  ● In the ovary a Megaspore mother cell divides by  meiosis to produce 4 Megaspores, 3 of which die and  1 remains alive to become the Functional Megaspore.  This divides by Mitosis to produce  a 7 cell  gametophyte that has 8 nuclei: 6 cells have 1 nucleus  and 1 cell has two.  ○ 1 cell is the Egg Cell  ○ 2 are Synergids, which surround the Egg  Cell and help to guide the Pollen Tube to the  Egg  ○ 3 are Antipodal Cells, which lie at the  opposite side of the above 3 and their  function is unknown  ○ 1 cell is the Central Cell and has the two  other nuclei. This cell forms the Endosperm.  ■ Complete vs. Incomplete ­ Flowers with all 4 Whorls vs. 1 or more missing Whorls.  ■ Perfect vs. Imperfect ­ Have stamens and Carpels vs. Have one or the other. Staminate  flowers have only Stamens and Carpellate have only Carpels.  ■ Dioecious vs. Monoecious ­ The Staminate and Carpellate Flowers are on different plants  vs. on the same plant.  ○ Pollination and Double Fertilization  ■ Pollination ­ The Pollen Grain is deposited on the Stigma. The Stigma and Style determine  whether the Pollen Grain is compatible and, if so, the Pollen Grain hydrates and  germinates. The Pollen Tube Cell extends through the Style into the Ovule and deposits  the two Sperm Cells.  ■ Double Fertilization ­ 1 Sperm fuses with the Egg to become the Zygote, which becomes  the Embryo. The other fuses with the Central Cell nuclei to form the first endosperm cell.  ○ Embryos and Seedlings  ■ The Embryo is a young, multicellular, diploid sporophyte. The first cell division in the  Zygote is unequal, one cell is much larger than the other and this established the  Apical­Basal Polarity. The smaller cell develops into the Embryo while the larger cell  becomes the “Suspensor.” This “Suspensor” channels nutrients and hormones from the  parent sporophyte to young embryo. This slowly disappears and then older embryos rely  on the Endosperm.  ■ Young dicot embryos are spherical but they become heart shaped as the Cotyledons (the  precursor to the first leaves) develop and curl to fit inside the seeds.       11  ■ Mature monocot embryos are cylindrical and have a single Cotyledon.  ■ Seeds only develop from fertile ovules, which means it contains an embryo and  Endosperm. Seeds have a tough coat produced by the Sporophyte Integuments.    All done with this section! Good luck y’all! 


Buy Material

Are you sure you want to buy this material for

50 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Amaris Trozzo George Washington University

"I made $350 in just two days after posting my first study guide."

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Parker Thompson 500 Startups

"It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.