New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Bio 102 - Exam 2 Study Guide

Star Star Star Star Star
1 review
by: Kate Hoffman

Bio 102 - Exam 2 Study Guide Bio 102

Marketplace > University of Mississippi > Biology > Bio 102 > Bio 102 Exam 2 Study Guide
Kate Hoffman
GPA 3.9

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

Study guide answers in detail for Exam 2
Inquiry Into Life Human Biology
Dr. Carr
Study Guide
Bio 102, Human Biology, exam, midterm
50 ?




Star Star Star Star Star
1 review
Star Star Star Star Star
"I'm a really bad notetaker and the opportunity to connect with a student who can provide this help is amazing. Thank you so much StudySoup, I will be back!!!"

Popular in Inquiry Into Life Human Biology

Popular in Biology

This 11 page Study Guide was uploaded by Kate Hoffman on Tuesday March 1, 2016. The Study Guide belongs to Bio 102 at University of Mississippi taught by Dr. Carr in Spring 2016. Since its upload, it has received 118 views. For similar materials see Inquiry Into Life Human Biology in Biology at University of Mississippi.


Reviews for Bio 102 - Exam 2 Study Guide

Star Star Star Star Star

I'm a really bad notetaker and the opportunity to connect with a student who can provide this help is amazing. Thank you so much StudySoup, I will be back!!!



Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 03/01/16
EXAM 2 REVIEW Chapter 4: Transportation of substances in cells Simple Diffusion: a substance passes through a membrane along a concentration gradient, without the help of transport proteins. Facilitated Diffusion: a membrane protein admits a substance along a concentration gradient without the use of ATP. Active Transport: requires ATP to move a molecule against the concentration gradient. Also requires the use of a membrane protein. (Example: sodium-potassium pump) Osmosis: the diffusion of water across a semipermeable membrane. Hypertonic: the cell shrinks; there is more water on the inside of the cell than the outside, so the water rushes out of the cell. Hypotonic: the cell swells; there is more water on the outside than the inside of the cell, so the water rushes into the cell. May cause the cell to burst. Isotonic: the cell remains normal; there is an equal amount of water on the inside and outside. Endocytosis: a type of active transport (vesicle) where a cell engulfs a larger substance molecule. Exocytosis: a type of active transport (vesicle) where a cell pushes out a larger substance/waste molecule. Chapter 23: Tissues and Organ Systems Tissues: specialized cells that function together to reach a common goal. Organs: specialized tissues that function together to reach a common goal. Organ systems: specialized organs that work together to complete a process in the body. Cells-> tissues-> organs-> organ systems Organ systems that…  Coordinate communication: nervous and endocrine Nervous: coordinates other systems quickly through impulses Endocrine: coordinates other systems slowly through hormones  Support and move the body: skeletal and muscular Skeletal: provides protection and support Muscular: provides movement and body heat  Acquire energy: digestive circulatory, and respiratory Digestive: provides nutrition Circulatory: delivers nutrients throughout the body Respiratory: eliminates CO 2and provides O 2  Protect the body: urinary, integumentary, immune, and lymphatic Urinary: removes waste from blood and reabsorbs useful substances Integumentary: provides a barrier from outer surroundings Immune: provides a barrier from disease and infection Lymphatic: connects the circulatory and immune systems together through the lymph nodes  Produces the next generation: reproductive Reproductive: Allows the creation of a new generation Homeostasis: the maintenance of a stable environment for the body, internally. The most common way in which homeostasis is achieved is through negative feedback. Negative Feedback: when a change is detected in the body, a response is activated to counter that change. For example: the regulation of body temperature Positive Feedback: when a change is reinforced to return the body back to a balanced state. For example: child birth labor and blood clotting. Chapter 28: The Digestive and Urinary Systems Heterotroph: animals that cannot produce their own food; they rely on the energy of others by eating the bodies of autotrophs, other heterotrophs, or both. Factors that determine the need for food/energy:  Body temperature  Body size  Physiological state (well-being) Micronutrients: Nutrients needed in small amounts (vitamins, minerals) Macronutrients: Nutrients needed in large amounts (water, carbs, proteins, fats) Water soluble vitamins: B and C Lipid (fat) soluble vitamins: A, D, E, and K BMI: Body Mass Index; used to calculate the ratio of fat in the body. Not necessarily the best way to determine a deeper understanding of a person’s overall health. Starvation: taking in too few calories, on average. Underweight Obesity: taking in too many calories, on average. Overweight Anorexia: An eating disorder which causes starvation; when a person refuses to eat due to the belief that they are overweight Bulimia: An eating disorder which causes starvation; when a person binges and purges food to the point where they starve and cause major damage to their esophagus from the constant strain of throwing up (stomach acid eats away at the tissue). The Digestive System Ingestion-> digestion-> absorption-> elimination The Mouth begins the mechanical and chemical breakdown of food. Starch is first digested here by the enzyme amylase. Food is then pushed back by the tongue to the pharynx, which is a flap that opens and allows access to the esophagus, which leads food to the stomach, where food is grinded further and turned into chyme with the stomach acid. Pepsin in the stomach begins protein digestion, while the hydrochloric acid further denatures the protein for digestion. A person cannot talk and eat at the same time because of the epiglottis, which closes off the airway when food is being swallowed. “Only one pipe is open at a time” or it “goes down the wrong way”. Heartburn/acid reflux: a condition in which acidic gastric fluid is regurgitated into the esophagus Gastric ulcers: a hole in the lining of the stomach corroded by the acidic digestive juices which are secreted by the stomach cells; usually caused by a lack of mucus to line the stomach interior Small Intestine: contains villi (small “hairs”) that absorb nutrients from digestion (proteins, lipids, carbohydrates, and water); microvilli provide a greater surface area in the small intestine for further absorption. Large Intestine: Absorbs any remaining useful nutrients such as water, minerals, and salt, leaving behind feces, which are passed through the rectum and anus. The Bacteria of the large intestine play a vital role in digesting any remaining nutrients, providing vitamins, and providing healthy cultures for immunity reasons. Appendix: provides ‘good’ bacterial cultures for the gut Accessory organs include the pancreas, gallbladder, and liver. Pancreas: supplies enzymes for further digestion such as amylase, trypsin, chymotrypsin, lipases, and nucleases Liver: produces bile, which emulsifies fat (breaks down for digestion) Gallbladder: stores bile and releases it to the small intestine The Urinary System ---The transportation of metabolic wastes, water, and salts from the bloodstream Body fluid regulation is required for survival because it excretes nitrogenous wastes and regulates water and electrolyte levels in the body. Nitrogenous waste: results from the breakdown of proteins, which creates urea (the main waste byproduct of the breakdown of proteins) Osmoregulation: the regulation of the balance between salt and water in the body Major Organs: Kidneys, Ureters, Bladder, Urethra The kidneys filter blood through a filter and winding tubule. The functional unit of the kidney is the nephron, which receives blood to filter from capillaries from the renal artery. The renal vein carries the clean blood away. The resulting urine, composed of wastes and extra fluid, flows from the kidneys to the bladder through two tubes called ureters, one on each side of the bladder. The bladder stores urine. When the bladder empties, urine flows out of the body through a tube called the urethra, located at the bottom of the bladder. The three processes of the urinary formation: Filtration: water and dissolved substances are filtered out of the blood Reabsorption: useful materials (salts, water, glucose, amino acids) are returned to the bloodstream Secretion: wastes are removed from the blood to the filtrate in each nephron, and are released as urine ADH/Antidiuretic Hormone: secreted by the posterior pituitary, causes the reabsorption of water by the kidney; causes the body to conserve more water by making the urine more concentrated (darker). Chapter 27: The Circulatory and Respiratory Systems Blood contains water, proteins, cells, cell fragments, and other dissolved substances Main Components of Blood: Red Blood Cells: 95% (red is the most numerous) White Blood Cells: 0.1% Plasma: 4.8% (Highest volume; made up of water, antibodies, and other dissolved materials: salts, wastes, nutrients, hormones, dissolved gasses) Circulatory Systems: Pulmonary: Delivers blood to the lungs and back to the heart Systemic: Delivers blood to the rest of the body and back to the heart Arteries: (carries blood away from the heart) oxygen deficient (lacks) Veins: (carries blood to the heart) oxygen abundant (rich) The 3 cellular components are RBCs, WBCs, and platelets RBCs and WBCs are produced in bone marrow Blood type is determined by the antigens in blood cells (a, b, ab, o) The Heart The main parts of the heart are the left and right ventricles and atria; the heart also consists of cardiac muscle and an endothelium (inner wall that lines the inside and blood vessels) Path of Blood: 1.A blood cell without oxygen will travel through a vein until it meets up with the superior vena cava, a large vein that takes blood from the head and arms to the heart. 2.The cell passes the right atrium, where it meets with blood from the lower part of the body from the inferior vena cava. 3.Blood is then pumped into the right ventricle, which pumps blood through the pulmonary valve (pulmonary flow). 4.It then goes through the pulmonary artery and receives oxygen from a lung. 5. The cell will returns to the heart through the pulmonary vein and meets up with other blood from the right lung in the left atrium of the heart. 6.The blood then flows down into the left ventricle. This is the part of the heart that pumps blood throughout the entire body (systemic flow). 7.After a passing through the aortic valve, the blood follows through the ascending aorta and out through the circulatory system to your toes. 8.After the organs and muscle tissue use the oxygen, it’ll travel up the inferior vena cava and back to the heart, starting the process all over again. The right side of the heart pumps deoxygenated blood to the lungs to pick up oxygen. (pulmonary) The left side of the heart receives the oxygen-rich blood from the lungs and pumps it to the body. (systemic) The opening and closing of the heart valves cause the ‘lub dub’ sound of a heart beat Heart Beat: The SA Node in the right atrium sends a signal to contract the atria, which then allow the ventricles to fill; once they fill, the signal reaches the AV Node (located in the right atrium as well), which then causes the ventricles to contract and force the blood out of the heart. Exercise affects the heart by… Increasing red blood cell count Increasing stroke volume Building new blood vessels (less risk of heart attack) Lowering blood pressure and cholesterol Increasing oxygen intake Blood Vessels Arteries: (and arterioles) are vessels that carry blood away from the heart; contain smooth muscle and are the strongest due to enormous pressure Capillaries: connect arteries and veins; do not have muscle; the location of exchange (diffusion) with individual cells and are composed of a single thin layer of endothelial cells. Veins: (and venules) are vessels that carry blood to the heart. Contain valves that prevent the backflow of blood. Blood Pressure: the medulla of the brain regulates blood pressure and adjusts the heart rate and the diameter of arterioles to maintain homeostasis through negative feedback Systolic Pressure: high point; contraction; top number Diastolic Pressure: lowest point; relaxation; bottom number Normal Pressure: (varies upon ages, sex, race, etc.) the average is 110/70 mmHg (millimeters of mercury) Respiratory System: Nose: warms air and traps debris (upper) Pharynx: air flows through to the larynx; Adam’s apple (upper) Larynx: directs food to the esophagus and air to the trachea; contains vocal cords (upper) Trachea: tube that branches into two bronchi leading to the lungs; delivery of air (lower) Lungs: contains bronchi, bronchioles, and alveoli, the main respiratory surface. (lower) Mouth/nose-> pharynx-> larynx-> trachea-> bronchi-> bronchioles-> alveoli Breathing Negative Pressure Breathing: when the diaphragm and chest muscles contract, the chest cavity expands; this causes air to rush in. Once the chest relaxes, inner pressure increases and forces the air out. Gas exchange takes place in the capillaries surrounding the alveoli of the lungs. CO2 and O2 are exchanged by diffusion across a concentration gradient. Oxygen is delivered to the body cells by blood cells and used, and then returned to the blood cells as carbon dioxide. Carbon dioxide is either bound to blood cells by hemoglobin or is dissolved in the plasma; too much can be poisonous. It is the main contender in the control of respiration. Carbon dioxide controls the pH of blood (as carbonic acid, which further dissociates into hydrogen and bicarbonate ions), which can trigger the rate and depth of breath needed. A smoker’s cough consists of chest pain, chronic coughing, and shortness of breath Causes of cardiovascular disease (CVD): high blood pressure and hypertension Outcomes of CVD: Heart attack and stroke. This is caused by the hardening of arteries and vessels, and the blockage of the flow of blood, which causes a starvation for oxygen in the afflicted area.


Buy Material

Are you sure you want to buy this material for

50 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Bentley McCaw University of Florida

"I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"

Jennifer McGill UCSF Med School

"Selling my MCAT study guides and notes has been a great source of side revenue while I'm in school. Some months I'm making over $500! Plus, it makes me happy knowing that I'm helping future med students with their MCAT."

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Parker Thompson 500 Startups

"It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.