×
Log in to StudySoup
Get Full Access to UC - BANA 2081 - Class Notes - Week 2
Join StudySoup for FREE
Get Full Access to UC - BANA 2081 - Class Notes - Week 2

Already have an account? Login here
×
Reset your password

xwccx

xwccx

Description

School: University of Cincinnati
Department: Business Analytics
Course: Preparing for Professional Experiences
Professor: Jordan crabbe
Term: Winter 2016
Tags: Disctete Probability Distributions
Cost: 25
Name: BANA 2081-006 CH5 Notes
Description: These notes cover material from last weeks class (week 7) on 02/24/2016
Uploaded: 03/03/2016
16 Pages 265 Views 1 Unlocks
Reviews


ul.lst-kix_slj1cc27gpmn-1{list-style-type:none}ul.lst-kix_slj1cc27gpmn-0{list-style-type:none}ul.lst-kix_slj1cc27gpmn-7{list-style-type:none}ul.lst-kix_slj1cc27gpmn-6{list-style-type:none}ul.lst-kix_slj1cc27gpmn-8{list-style-type:none}ul.lst-kix_slj1cc27gpmn-3{list-style-type:none}ul.lst-kix_slj1cc27gpmn-2{list-style-type:none}ul.lst-kix_slj1cc27gpmn-5{list-style-type:none}ul.lst-kix_slj1cc27gpmn-4{list-style-type:none}.lst-kix_slj1cc27gpmn-1 > li:before{content:"○ "}.lst-kix_slj1cc27gpmn-2 > li:before{content:"■ "}.lst-kix_slj1cc27gpmn-3 > li:before{content:"● "}.lst-kix_slj1cc27gpmn-5 > li:before{content:"■ "}.lst-kix_slj1cc27gpmn-4 > li:before{content:"○ "}.lst-kix_slj1cc27gpmn-6 > li:before{content:"● "}.lst-kix_ln8tpqq7p52-6 > li:before{content:"● "}.lst-kix_slj1cc27gpmn-8 > li:before{content:"■ "}.lst-kix_ln8tpqq7p52-5 > li:before{content:"■ "}.lst-kix_ln8tpqq7p52-7 > li:before{content:"○ "}.lst-kix_slj1cc27gpmn-7 > li:before{content:"○ "}.lst-kix_ln8tpqq7p52-4 > li:before{content:"○ "}.lst-kix_ln8tpqq7p52-8 > li:before{content:"■ "}ul.lst-kix_o30funkvy8h1-3{list-style-type:none}ul.lst-kix_ln8tpqq7p52-8{list-style-type:none}ul.lst-kix_o30funkvy8h1-4{list-style-type:none}ul.lst-kix_ln8tpqq7p52-7{list-style-type:none}ul.lst-kix_o30funkvy8h1-5{list-style-type:none}ul.lst-kix_ln8tpqq7p52-6{list-style-type:none}ul.lst-kix_o30funkvy8h1-6{list-style-type:none}ul.lst-kix_ln8tpqq7p52-5{list-style-type:none}ul.lst-kix_o30funkvy8h1-7{list-style-type:none}.lst-kix_ln8tpqq7p52-0 > li:before{content:"● "}ul.lst-kix_ln8tpqq7p52-4{list-style-type:none}ul.lst-kix_o30funkvy8h1-8{list-style-type:none}ul.lst-kix_ln8tpqq7p52-3{list-style-type:none}ul.lst-kix_ln8tpqq7p52-2{list-style-type:none}ul.lst-kix_ln8tpqq7p52-1{list-style-type:none}.lst-kix_ln8tpqq7p52-2 > li:before{content:"■ "}.lst-kix_ln8tpqq7p52-1 > li:before{content:"○ "}.lst-kix_ln8tpqq7p52-3 > li:before{content:"● "}ul.lst-kix_o30funkvy8h1-0{list-style-type:none}ul.lst-kix_o30funkvy8h1-1{list-style-type:none}ul.lst-kix_o30funkvy8h1-2{list-style-type:none}ul.lst-kix_ln8tpqq7p52-0{list-style-type:none}.lst-kix_o30funkvy8h1-8 > li:before{content:"■ "}.lst-kix_slj1cc27gpmn-0 > li:before{content:"● "}.lst-kix_o30funkvy8h1-5 > li:before{content:"■ "}.lst-kix_o30funkvy8h1-7 > li:before{content:"○ "}.lst-kix_o30funkvy8h1-6 > li:before{content:"● "}.lst-kix_o30funkvy8h1-3 > li:before{content:"● "}.lst-kix_o30funkvy8h1-4 > li:before{content:"○ "}.lst-kix_o30funkvy8h1-2 > li:before{content:"■ "}.lst-kix_o30funkvy8h1-1 > li:before{content:"○ "}.lst-kix_o30funkvy8h1-0 > li:before{content:"● "}

BANA 2081 CH 5We also discuss several other topics like siue social work

Discrete probability Distributions

If you want to learn more check out Who is James Ball?

5.1

Random Variables

  • numerical description of experimental outcome
  • can be discrete or continuous sal

If you want to learn more check out What are the different forms of geography?

Discrete random Variable

  • can take the form of many Whole #'s or an infinite amount of whole #5

Ex 1) An accountant taking a CPA exam which has 4 parts. x = # of parts on the exam that were passed If you want to learn more check out Why does saturated fat increase cholesterol?

a.) Is the random variable x discrete? If you want to learn more check out interwarred

yes because x can only take on whole #'s We also discuss several other topics like the pattern of fluctuations in bodily processes that occur regularly each day are called

b.) What Values may the random variable x assum?

x = 0, 1, 2, 3, 4

Ex 2) An experiment of cars driving through a tollbooth

x = # of cars driving through in a 24 hr period.

a.) Is x a discrete random variable?

yes because # of cars can only be a whole # value

b.) What values may x assume?

x=0, 1, 2, 3 , . . . . , ∞

Ex 3) What are the possible outcomes of values of each experiment

Experiment

Random Variables

Possible Values of x

Contact 5 customers

# of customer who place an order

x = 0, 1, 2, 3, 4, 5

Inspect shipment of 50 radios

# of defective radios

x = 0-50 whole #’s

Open restaurant 1 day

# of customers

x =0-∞ whole #’s

Sell a car

Gender of customer

x = 1, 0

0=male 1=female

Continuous Kardon variable

  • can assume any numerical value either a small set or an infinite amount 0,0,1,0,2, 0.3, 0.4 and all the #'s in between
  • Time, weight, distance temperature fall under continuous

Ex 4) x = Time between incoming phone calls at a major insurance company

a.) Is random variable x continuous ?

yes, Time could be 4(h):30(n):15(s):05(ms)

b.) what values may x assume

x 0 any value greater than or equal to zero. Any amount of time can pass between Zero, one second, 3 minutes 2 hours or 10 hours but in order to avoid Writing down all those milliseconds we write it this way x  0

Ex 5) Consider a 90-mile stretch of 1 - 75 north of Atlanta Georgia. For an emergency ambulance service located in Atlanta, we might define the random variable x = # of miles to the next traffic accident along this section of 1-75.

a.) Is the random variable x continuous ?

yes distance can be 1 mile or 1.1, 1.2, . . . 89.9

b) What values may the random variable x assume?

0  x  90

EX 6) What are the possible values of each continuous experiment ?

Experiment

Random Variable, x

Possible values for x

Operate a bank

Time between customers

Fill a soft drink can (max=12.1 oz)

# of oz.

Construct a new library

% of project complete after 6 months

Test a new chemical process

Temp at which desired reaction happens

min=150F max=212F

Developing Discrete probability Distributions

Probability Distribution - for a random variable describes how probability is spread out over the values of the random variable

Discrete probability distribution can be displayed on tables & graphs or in formula

Page Expired
5off
It looks like your free minutes have expired! Lucky for you we have all the content you need, just sign up here