.lstkix_7sl378fhtstc1 > li:before{content:" "}ul.lstkix_bvalbyiyltal6{liststyletype:none}ul.lstkix_bvalbyiyltal7{liststyletype:none}ul.lstkix_bvalbyiyltal4{liststyletype:none}ul.lstkix_bvalbyiyltal5{liststyletype:none}ul.lstkix_bvalbyiyltal2{liststyletype:none}ul.lstkix_bvalbyiyltal3{liststyletype:none}.lstkix_7sl378fhtstc0 > li:before{content:" "}ul.lstkix_bvalbyiyltal0{liststyletype:none}ul.lstkix_bvalbyiyltal1{liststyletype:none}.lstkix_7sl378fhtstc5 > li:before{content:" "}.lstkix_83v58aijjsiw6 > li:before{content:" "}.lstkix_7sl378fhtstc3 > li:before{content:" "}.lstkix_7sl378fhtstc7 > li:before{content:" "}.lstkix_83v58aijjsiw8 > li:before{content:" "}.lstkix_7sl378fhtstc2 > li:before{content:" "}.lstkix_7sl378fhtstc6 > li:before{content:" "}.lstkix_83v58aijjsiw7 > li:before{content:" "}.lstkix_7sl378fhtstc4 > li:before{content:" "}.lstkix_83v58aijjsiw0 > li:before{content:" "}.lstkix_bvalbyiyltal6 > li:before{content:" "}.lstkix_bvalbyiyltal5 > li:before{content:" "}.lstkix_bvalbyiyltal3 > li:before{content:" "}.lstkix_83v58aijjsiw5 > li:before{content:" "}.lstkix_bvalbyiyltal4 > li:before{content:" "}.lstkix_83v58aijjsiw4 > li:before{content:" "}.lstkix_83v58aijjsiw3 > li:before{content:" "}ul.lstkix_bvalbyiyltal8{liststyletype:none}.lstkix_83v58aijjsiw2 > li:before{content:" "}.lstkix_bvalbyiyltal7 > li:before{content:" "}.lstkix_83v58aijjsiw1 > li:before{content:" "}.lstkix_bvalbyiyltal8 > li:before{content:" "}ul.lstkix_83v58aijjsiw6{liststyletype:none}.lstkix_bvalbyiyltal1 > li:before{content:" "}ul.lstkix_83v58aijjsiw7{liststyletype:none}ul.lstkix_83v58aijjsiw8{liststyletype:none}ul.lstkix_7sl378fhtstc0{liststyletype:none}ul.lstkix_7sl378fhtstc1{liststyletype:none}ul.lstkix_7sl378fhtstc2{liststyletype:none}ul.lstkix_7sl378fhtstc3{liststyletype:none}.lstkix_bvalbyiyltal2 > li:before{content:" "}ul.lstkix_7sl378fhtstc4{liststyletype:none}ul.lstkix_7sl378fhtstc5{liststyletype:none}ul.lstkix_7sl378fhtstc6{liststyletype:none}ul.lstkix_7sl378fhtstc7{liststyletype:none}ul.lstkix_7sl378fhtstc8{liststyletype:none}.lstkix_bvalbyiyltal0 > li:before{content:" "}ul.lstkix_83v58aijjsiw0{liststyletype:none}ul.lstkix_83v58aijjsiw1{liststyletype:none}ul.lstkix_83v58aijjsiw2{liststyletype:none}ul.lstkix_83v58aijjsiw3{liststyletype:none}.lstkix_7sl378fhtstc8 > li:before{content:" "}ul.lstkix_83v58aijjsiw4{liststyletype:none}ul.lstkix_83v58aijjsiw5{liststyletype:none}
Section 3.1If you want to learn more check out What are the three primary agents of metamorphism?
If you want to learn more check out What is a process used to treat phobias?
We also discuss several other topics like What is pseudorandom?
Tree  a connected graph without circuitsIf you want to learn more check out Discuss what chargaff's rule is about.
We also discuss several other topics like What idea refers to a communal group of actors who believed in communism and revealing what the bottom of the social scale was like?
Theorem 1: if T is connected, these are equivalent (imply each other)
 T has no circuits
 If a is a node rh for every node x there exists a unique path between a and y.
 For every noe pair x and y, there exists a unique path between x and y
 T is minimally connected. Removing an edge and means T is no longer connected
We also discuss several other topics like mdu4003 uf
Theorem 2: A tree on n nodes has n1 edges
Leaf  a node in a rooted tree, without children
Internal path  node in a rooted tree that isn’t a leaf
mary tree  each internal node has m children in this tree
Theorem 3  An mary tree with i internal nodes has n≈mi+1 nodes
Corollary in an mary tree T
 i internal nodes imply leaves

leaves imply internal nodes and nodes
 H nodes imply internal nodes and leaves
Height  length of longest path between root and leaf
Balanced tree  a rooted tree is a balanced ifall
leaves are at level h or h1 (within level in closeness)
Balanced Not balanced
Theorem 4: Let T be an mary tree of height h with l leaves;
↖ Symbols means you round up ↗
A tree with nodes must have at least 2 nodes of degree 1
list  seen but unexplored nodes
S  starting node
Put s on lit
Mark s as seen
While list contains node(s)
Pick a node i from list
If edge (i,j) exists with unseed node j
then mark j as seen
mark (i,j) as tree edge
put j on list
Otherwise remove j from list
This only finds all nodes if graph is connected
“Tree edges” don't form circuits