.lst-kix_7sl378fhtstc-1 > li:before{content:"- "}ul.lst-kix_bvalbyiyltal-6{list-style-type:none}ul.lst-kix_bvalbyiyltal-7{list-style-type:none}ul.lst-kix_bvalbyiyltal-4{list-style-type:none}ul.lst-kix_bvalbyiyltal-5{list-style-type:none}ul.lst-kix_bvalbyiyltal-2{list-style-type:none}ul.lst-kix_bvalbyiyltal-3{list-style-type:none}.lst-kix_7sl378fhtstc-0 > li:before{content:"- "}ul.lst-kix_bvalbyiyltal-0{list-style-type:none}ul.lst-kix_bvalbyiyltal-1{list-style-type:none}.lst-kix_7sl378fhtstc-5 > li:before{content:"- "}.lst-kix_83v58aijjsiw-6 > li:before{content:"- "}.lst-kix_7sl378fhtstc-3 > li:before{content:"- "}.lst-kix_7sl378fhtstc-7 > li:before{content:"- "}.lst-kix_83v58aijjsiw-8 > li:before{content:"- "}.lst-kix_7sl378fhtstc-2 > li:before{content:"- "}.lst-kix_7sl378fhtstc-6 > li:before{content:"- "}.lst-kix_83v58aijjsiw-7 > li:before{content:"- "}.lst-kix_7sl378fhtstc-4 > li:before{content:"- "}.lst-kix_83v58aijjsiw-0 > li:before{content:"- "}.lst-kix_bvalbyiyltal-6 > li:before{content:"- "}.lst-kix_bvalbyiyltal-5 > li:before{content:"- "}.lst-kix_bvalbyiyltal-3 > li:before{content:"- "}.lst-kix_83v58aijjsiw-5 > li:before{content:"- "}.lst-kix_bvalbyiyltal-4 > li:before{content:"- "}.lst-kix_83v58aijjsiw-4 > li:before{content:"- "}.lst-kix_83v58aijjsiw-3 > li:before{content:"- "}ul.lst-kix_bvalbyiyltal-8{list-style-type:none}.lst-kix_83v58aijjsiw-2 > li:before{content:"- "}.lst-kix_bvalbyiyltal-7 > li:before{content:"- "}.lst-kix_83v58aijjsiw-1 > li:before{content:"- "}.lst-kix_bvalbyiyltal-8 > li:before{content:"- "}ul.lst-kix_83v58aijjsiw-6{list-style-type:none}.lst-kix_bvalbyiyltal-1 > li:before{content:"- "}ul.lst-kix_83v58aijjsiw-7{list-style-type:none}ul.lst-kix_83v58aijjsiw-8{list-style-type:none}ul.lst-kix_7sl378fhtstc-0{list-style-type:none}ul.lst-kix_7sl378fhtstc-1{list-style-type:none}ul.lst-kix_7sl378fhtstc-2{list-style-type:none}ul.lst-kix_7sl378fhtstc-3{list-style-type:none}.lst-kix_bvalbyiyltal-2 > li:before{content:"- "}ul.lst-kix_7sl378fhtstc-4{list-style-type:none}ul.lst-kix_7sl378fhtstc-5{list-style-type:none}ul.lst-kix_7sl378fhtstc-6{list-style-type:none}ul.lst-kix_7sl378fhtstc-7{list-style-type:none}ul.lst-kix_7sl378fhtstc-8{list-style-type:none}.lst-kix_bvalbyiyltal-0 > li:before{content:"- "}ul.lst-kix_83v58aijjsiw-0{list-style-type:none}ul.lst-kix_83v58aijjsiw-1{list-style-type:none}ul.lst-kix_83v58aijjsiw-2{list-style-type:none}ul.lst-kix_83v58aijjsiw-3{list-style-type:none}.lst-kix_7sl378fhtstc-8 > li:before{content:"- "}ul.lst-kix_83v58aijjsiw-4{list-style-type:none}ul.lst-kix_83v58aijjsiw-5{list-style-type:none}
Section 3.1
If you want to learn more check out What are the three primary agents of metamorphism?
If you want to learn more check out What is a process used to treat phobias?
We also discuss several other topics like What is pseudorandom?
Tree - a connected graph without circuitsIf you want to learn more check out Discuss what chargaff's rule is about.
We also discuss several other topics like What idea refers to a communal group of actors who believed in communism and revealing what the bottom of the social scale was like?
Theorem 1: if T is connected, these are equivalent (imply each other)
- T has no circuits
- If a is a node rh for every node x there exists a unique path between a and y.
- For every noe pair x and y, there exists a unique path between x and y
- T is minimally connected. Removing an edge and means T is no longer connected
We also discuss several other topics like mdu4003 uf
Theorem 2: A tree on n nodes has n-1 edges
Leaf - a node in a rooted tree, without children
Internal path - node in a rooted tree that isn’t a leaf
m-ary tree - each internal node has m children in this tree
Theorem 3 - An m-ary tree with i internal nodes has n≈mi+1 nodes
Corollary in an m-ary tree T
- i internal nodes imply
leaves
-
leaves imply
internal nodes and
nodes
- H nodes imply
internal nodes and
leaves
Height - length of longest path between root and leaf
Balanced tree - a rooted tree is a balanced ifall
leaves are at level h or h-1 (within level in closeness)
Balanced Not balanced
Theorem 4: Let T be an m-ary tree of height h with l leaves;
↖ Symbols means you round up ↗
A tree with nodes
must have at least 2 nodes of degree 1
list - seen but unexplored nodes
S - starting node
Put s on lit
Mark s as seen
While list contains node(s)
Pick a node i from list
If edge (i,j) exists with unseed node j
then mark j as seen
mark (i,j) as tree edge
put j on list
Otherwise remove j from list
This only finds all nodes if graph is connected
“Tree edges” don't form circuits